3D Dynamic Design Of AL-Nour Building - PowerPoint PPT Presentation

1 / 55
About This Presentation
Title:

3D Dynamic Design Of AL-Nour Building

Description:

3D Dynamic Design Of AL-Nour Building. An-Najah National University. Faculty of Engineering. Civil Engineering Department. Prepared by: 1. – PowerPoint PPT presentation

Number of Views:113
Avg rating:3.0/5.0
Slides: 56
Provided by: engNajah
Learn more at: https://eng.najah.edu
Category:

less

Transcript and Presenter's Notes

Title: 3D Dynamic Design Of AL-Nour Building


1
3D Dynamic Design Of AL-Nour Building
  • An-Najah National University
  • Faculty of Engineering
  • Civil Engineering Department

Prepared by
1. Ahmad Rashdan. 2. Jaffar Hassan
. 3. Mustafa Aqra. 4. Odai
Odeh.
Supervised by Dr. Abdul Razzaq Touqan
2
Chapter 1 Introduction
3
Introduction
  • Al-Nour building is 8 stories reinforced concrete
    building ,located in Nablus city and used as
    residential building.
  • The first story is used as garages with plan area
    of 700 m2 and the above 7 stories used as
    residential apartment (two apartments per floor)
    with plan area of 490 m2 due to the setback.
  • The soil bearing capacity 400 KN/m2

4
Introduction
  • The Following slides shows
  • 1. columns centers plan.
  • 2. 3D model of the building.

5
Columns Centers Plan
6
(No Transcript)
7
Structural System
  • The structural system used is on way ribbed slab
    with load path in x-direction.

8
Materials
  • - Concrete
  • - fc 320 kg/cm²( 32 MPa) For columns.
  • - fc 240 kg/cm²( 24 MPa) for others.
  • - The concrete unit weight 25 (KN/m3).
  • - Reinforcing Steel The yield strength of steel
    is equal to 4200 Kg/cm2 (420 MPa).
  • -Others

Material Unit weight (KN/m3)
Reinforced concrete 25
Plain concrete 23
Sand 18
Aggregate 17
Y-tong 5
Blocks 12
Polystyrene 0.3
Masonry stone 27
Light weight block 6
Tile 26
9
Design loads
  • - Dead loads in addition to slab own weight
  • Superimposed dead load 4.5 KN/m2
  • Partition load 1 KN/m2 .
  • Masonry wall weight 21.22 KN/m.
  • - Live load 2 KN/m2 .
  • -Water tanks load 1.14 KN/m2
  • - Seismic loads shown later.

10
Design codes and load combinations
  • - The following are the design codes used
  • ACI code 2008 .
  • IBC 2009 .
  • ASCE for design loads.
  • The following are the load combinations used
  • Wu 1.4DL.
  • Wu 1.2DL 1.6LL .
  • Wu 1.2DL LL E.
  • Wu 0.9DL E

11
Chapter 2 Preliminary Design
12
Preliminary design
  • We performed a preliminary design for all
    structural elements conceptually.
  • The story height is 3.12 m.
  • The following are the preliminary dimensions
  • Slab
  • - depth 25 cm (based on deflection criteria) .
  • - web width 12 cm.
  • - slab own weight 4.55KN/m².
  • - Ultimate load 14.06KN/m².

13
Preliminary Design
  • Beams
  • Since the structural system is one way ribbed
    slab (load path in x-direction) we have
  • Main beams in y-direction 30x60 cm.
  • Secondary beams in x-direction 40x25 cm.
  • Columns
  • Take a sample columns ( B3)
  • Area carried by column 28 m2
  • Ultimate slab load 14.06KN/m²
  • Pu 3769.6 KN.
  • Ag 2326.9 cm2.
  • ? Use columns of 40x60cm2.

14
Preliminary design and checks
  • Footing
  • we performed an preliminary design for footing
    of the previous column as single footing.
  • with dimensions of 2.9x2.7x0.7 m.

15
Chapter 3 Static Design
16
Static design
  • Final dimensions
  • 1. frame sections

Member Depth(cm) Width(cm)
Col. 80 40
Main interior beams 70 40
Main exterior beams 75 30
Secondary beams 25 40
Tie beams 50 30
17
Static Design
  • The new web width (bw) 15 cm.
  • Area sections dimensions

Area section name Thickness (cm)
Actual Slab 25
Equivalent Slab thickness 19.45 (in SAP model)
Shear wall 30 (initially)
  • The story height 3.5 m

18
Static design
  • Verification Of SAP model
  • We perform the verification for SAP models( one
    and eight stories and it was OK) the following
    is verification for eight stories
  • 1. Compatibility satisfied

19
Static Design
2.Equilibrium Satisfied
Load type Hand results(KN) SAP results (KN) Error
Dead load 76262.44 76273.132 0.01
Live load 8407.24 8407.24 0
  • 3.Stress -Strain relationship satisfied
  • Taking beam C in second story (taking 8 m
    span)

Load M-ve (left)(KN.m) Mve (KN.m) M-ve(right) (KN.m) Total moment (KN.m)
SAP Result 325.13 208.63 371.41 556.9
1D Result 0 341.40 433.61 558.21
Error 2.3
20
Static Design
  • Slab design
  • 1. Check slab deflection
  • So, ?dead 2.92 mm.
  • ?Live 0.78mm.
  • ? long term 7.16mm.
  • The allowable deflection 4000 /240 16.67 mm.
  • So the slab deflection 7.16mm lt allowable long
    term def. OK.
  • 2. Design for shear
  • The rib shear strength 23.2KN.
  • The max shear 36.75 KN/m.
  • shear per rib 0.5536.75 20.2 KN.
  • So 23.2 20.2 OK
  • So the slab is Ok for shear.

21
Static Design
  • 3. Design for bending moment
  • The moments are read from SAP using section cut

Point location/term Moment(KN.m) As(mm2) Bars
A1 6.3 113 2 F 12
A1- B1 8.6 113 2 F 10
B1 10.48 125 2 F 12
B1- C1 7.25 113 2 F 10
C1 10.29 122 2 F 12
C1 D1 8.1 113 2 F 10
D1 9 113 2 F 12
D1 E1 8.1 113 2 F 10
E1 13.55 163.3 2 F 12
22
Static Design
  • Design of beams in y-direction
  • Taking a sample beam (beam B in the first floor)
  • - The beam section dimensions are
  • - Total depth (h) 700 mm.
  • - The effective depth (d) 650 mm.
  • -Beam width (bw) 400 mm.
  • - min reinforcement ratio 0.0033.
  • - As min ?bd 0.0033400650 858 mm2
  • - fVc 159.1 KN.
  • - (Av/s)min 0.333.

23
Static Design
  • - Design information

point As(mm) As min (Av/s) (Av/s) min PI(m) Length(m) bars stirrups
B1 700 858 0.333 0.333 0.6 2 5F16 1F8 _at_30 cm
B1-2 854 858 0.333 0.333 -- 5.9 5F16 1F8 _at_30 cm
B2(L) 1676 858 0.333 0.333 1.3 4.8 6f20 1F8 _at_30 cm
B2(R) 1676 858 0.55 0.333 1.5 4.8 6f20 1F8 _at_15 cm
B2-3 1044 858 0.333 0.333 _ 7.9 5F16 1F8 _at_30 cm
B3(L) 1581 858 0.48 0.333 1.5 4.8 6f20 1F8 _at_20 cm
B3(R) 1581 858 0.333 0.333 1.3 4.8 6f20 1F8 _at_30 cm
B3-4 772 858 0.333 0.333 _ 5.9 5F16 1F8 _at_30 cm
B4 854 858 0.333 0.333 1 2.3 5F16 1F8 _at_30 cm
24
Static Design
  • Design of secondary beams
  • Total depth(H) 25cm.(hidden beam)
  • d 21cm (cover 4cm)
  • Width 40cm.
  • The following are the values of min
    reinforcement
  • (As) min 0.0033bd0.0033400210 277.2 mm
    (3F12).
  • Vc 0.750.167400210/1000 68.58KN.

25
Static Design
  • Design information

Point As(mm) As min (mm) (Av/s) (Av/s)min PI(m) bars stirrups
A4 469 277.2 0.333 0.333 0.88 5F12 1_at_10cm
A4-B4 277 277.2 0.333 0.333 0.88 3F12 1_at_10cm
B4 429 277.2 0.333 0.333 0.88 4F12 1_at_10cm
B4-C4 259 277.2 0.333 0.333 0.88 3F12 1_at_10cm
C4 424 277.2 0.333 0.333 0.88 4F12 1_at_10cm
C4-D4 260 277.2 0.333 0.333 0.88 3F12 1_at_10cm
D4 425 277.2 0.333 0.333 0.88 4F12 1_at_10cm
D4-E4 265 277.2 0.333 0.333 0.88 3F12 1_at_10cm
E4 432 277.2 0.333 0.333 0.88 4F12 1_at_10cm
E4-F4 147 277.2 0.333 0.333 0.88 3F12 1_at_10cm
F4 432 277.2 0.333 0.333 0.88 4F12 1_at_10cm
26
Design of columns
  • Column grouping, Area of steel stirrups

 Floor no. Columns As(mm2) column group Distribution of steel Stirrups spacing (mm)
All floors except No.8 All Columns 3200 C1 16f16 3f10 _at_250 mm
  Floor No.8 D2 G2 3766 C2 20f16 3f10 _at_300 mm
  Floor No.8 A2, B2, C2, H2, I2 J2 4774 C3 16f20 3f10 _at_300 mm
27
Manual design
 
Pu3034.75KN MY 11.02 KN.m(maximum value) MX
153.1 KN.m( maximum value) Mc ?nsM2
1.67(153.1) 255 KN.m
  • From the interaction diagram
  • ?1 use minimum steel ratio use ?1.
  • As 0.01xAg 0.01x40x80 3200mm2
  • Same as SAP value.

28
Tie beam design
Minimum area of steel 0.0033bd 436 mm2. Use
4?12mm bottom steel. Use 4?12mm top steel.
Shear design Vu at distance (d 44cm)
16.35KN, ?Vc 80.83KN. Use 1?8 mm_at_200mm.
29
Footing design
  • Single footing
  • Is one of the most economical types of footing
    and is used when columns are spaced at relatively
    long distances .
  • Bearing capacity of the soil400 KN/m2.

30
Footing grouping
Group Name Columns Service load(KN) Ultimate load (KN)
F1 A1, B1,C1,D1,E1,F1,G1,H1,I1,J1 305.6 375.7
F2 A2, J2,A4 B4,C4,D4,G4,H4,I4,J4, 2329.95 2878.51
F3 B2,C2, D2,G2,H2,I2,A3,B3,C3,D3,G3,H3, I3,J3 3667.66 4599.75
Combined E4 F4 2218.20 2741.80
Footing grouping according to columns
ultimate load.
31
footing details
Group Area of footing (m2) Dimensions (m) Depth (m) Steel distribution/m (Both directions) Area of shrinkage steel (mm2) Distribution in each direction
F1 0.96 1.2x0.8 0.3 4 Ø 14mm no No
F2 6.21 2.7x2.3 0.55 5 Ø 18mm 1 Ø 14_at_300mm
F3 9.57 3.3x2.9 0.75 6 Ø 18mm 1 Ø 14_at_200mm
Combined 13.11 5.7x2.3 0.55 1Ø25 /200mm 778.2 1 Ø 14_at_200mm
32
Design of Stairs
  •  

33
Verification of SAP model
Compatibility
Compatibility Satisfied
34
Cont.
Load type Hand results(KN) SAP results(KN) Error
Dead load 293.04 292.82 0.08
Live load 181.24 181.12 0.07
Equilibrium
Equilibrium Satisfied
Stress-Strain Relationships
Load M-ve(left) (KN.m) Mve (KN.m) M-ve(right) (KN.m)
3D SAP Result 22.1 11.9 19.46 32.68
1D Result 21.72 10.86 21.72 32.58
Error       0.3
Stressstrain relationship satisfied
 
 
 
 
 
35
Chapter 4 Dynamic Design
36
Dynamic Design
  • Methods for dynamic analysis
  • Equivalent static method.
  • Time history method.
  • Response spectrum analysis.
  • Input parameters in dynamic analysis
  • - Importance factor (I) 1 .
  • - Peak ground acceleration (PGA) 0.2g .
  • - Area mass 0.458 ton/m2
  • - Soil class Class B.
  • - Spectral accelerations Ss 0.5 .
  • S1
    0.2 .
  • - response modification factor R 3 in
    x-direction.

  • R 4.5 in y-direction.

37
Dynamic Design
  • Modal information
  • - For eight stories before enlarging beams in
    x-direction

Mode No. Direction Period (sec.) MMPR
1 X 2.55 77
2 RZ(Torsion) 1.707 67
4 y 0.972 65
  • - Enlarge the beams 2 4 to 30x70 (widthdepth)

38
Dynamic Design
  • - For eight stories after enlarging beams in
    x-direction

Mode No. Direction Period (sec.) MMPR
1 X 1.58 80
2 RZ(Torsion) 1.5 64
3 Y 0.795 65.4
4 X 0.497 11
  • - Comparison with manual results

Mode direction SAP result(sec) Manual result(sec) Error
x- direction 1.58 1.45 8
y- direction 0.795 0.73 8
39
Dynamic Design
  • Response spectrum analysis
  • We will perform the dynamic design using response
    spectrum method
  • Define two response spectrum load cases one in
    x-direction and the another in y-direction
  • - For response-x Scale factor 3.27.
  • Scale factor
    0.654.
  • - For response-y Scale factor 2.18.
  • Scale factor
    0.981.
  • Perform design using envelope combination and
    check whether static or dynamic combination
    controls .

40
Dynamic Design
  • Slab design
  • The comparison is performed.
  • Static design controls

41
(No Transcript)
42
Dynamic Design
  • Design of beams in y-direction
  • - Reinforcement from envelope combination
  • - Reinforcement from static combination

Static design Controls
43
Dynamic Design
  • Design of beams in X-direction
  • - Reinforcement from envelope combination is
    considered since the dimensions are increased

Dynamic design Controls
44
Dynamic Design
  • Design of columns
  • Three representative columns are selected
  • Interior column B3.
  • Edge column B2.
  • Corner column A4 .
  • The comparison is performed and static design
    controls for all columns.
  • The following table shows the comparison for
    column B3

45
Dynamic Design
The following table shows the comparison for
column B3 (M3, V2 )
floor/term Envelope combination Envelope combination Envelope combination Envelope combination Static combination Static combination Static combination Static combination
floor/term moment shear axial As(mm2) moment shear axial As(mm2)
1  68.04 31.34  4553.25  3200  5.54 1.678   4553.3  3200
2 45.78 22.15 3982.31  3200  6.97  3.7  3982.2  3200
3 49.81 22.82 3409.11  3200  4.78 2.73 3409.1  3200
4 47.33 20.07 2841.94  3200 4.62 2.55 2841.9  3200
5 44.51  18.49  2277.7  3200  3.78 2.12 1716.5  3200
6 42.58  16.78 1716.51  3200  3.71  2  1699.8  3200
7 39.19  13.98 1156.2  3200 2.88 1.36 1156.2  3200
8 26.75 8 600.378  3200 6.82 3.18 603.8  3200
Static design OK for columns.
46
Chapter 5 Structural Modeling Of One Way Ribbed
Slab
47
Structural Modeling Of One Way Ribbed Slabs
  • The ribbed slabs can be represented by one of
    the following ways
  • Equivalent stiffness method find the equivalent
    thickness of a solid slab that can achieve the
    same rib stiffness.
  • Represent it as separate ribs (T-section).
  • Represent the ribs by rectangular ribs and
    flange.
  • The main objective is to prove that three models
    give the nearly the same results.

48
Structural Modeling Of One Way Ribbed Slabs
  • Model 1 Equivalent stiffness method
  • Equivalent slab thickness (t) 19.45 cm.
  • I T-sec I rec ?( 0.55h3eq /12) 3.37110-4
  • h3eq 19.45 cm.
  • ?eq 23.87 KN/m3 . . . . .. .to achieve
    the same weight.
  • - Stiffness modifiers
  • M11 0.35 .
  • M22 0.0244
  • M1-2 0.0244.

49
Structural Modeling Of One Way Ribbed Slabs
  • Model 2 Representation as separate ribs
  • - Stiffness modifiers
  • I 3-3 0.35 .
  • I 2-2 0.35 .
  • Torsional constant(J) 0.35 .
  • The loads are inserted as line
  • Loads on ribs.
  • Substitute the weight of blocks.

50
Structural Modeling Of One Way Ribbed Slabs
  • Model 3 the slab is represented as rectangular
    ribs and flange.
  • 1. The rectangle section should satisfy
  • The actual T-section.
  • 2. Stiffness modifiers
  • I 3-3 0.6 .
  • I2-2 0.6 .
  • J 0.52 .
  • 3. Weight modifier 0.68 .
  • Flange Modifiers
  • - M11 0.0001 .(almost zero).
  • - M 22 0.25 .
  • - M 1-2 0.0001(almost zero).
  • ? we have to substitute the weight of blocks.

55 cm
8 cm
25 cm
15 cm
51
Structural Modeling Of One Way Ribbed Slabs
  • All the previous models are verified according
    to manual solution.
  • Static analysis is performed for the three models
    and we read the moment and shear at point C3 in
    span C3-4 for beam C in the second floor

load Moment (KN.m) Shear (KN) (mm2) ( (mm2/mm)
SAP Model 1 Results 371.41 268.63 1615 0.545
SAP Model 2 Results 377.87 286.43 1645.1 0.634
SAP Model 3 Results 373.56 274.13 1625 0.573
52
Structural Modeling Of One Way Ribbed Slabs
  • also dynamic analysis and design performed for
    the three models and the following are the modal
    information

Model 1
Mode Direction Period MMPR
Mode 1 x-direction 1.581 80
Mode 2 Torsion(Rz) 1.503 64
Mode 3 y- direction 0.796 65.4
Model 2
Mode Direction Period MMPR
Mode 1 x-direction 1.622 77.0
Mode 2 Torsion(Rz) 1.555 79.5
Mode 3 y- direction 0.924 70.9
Model 3
Mode Direction Period MMPR
Mode 1 x-direction 1.542 80.3
Mode 2 Torsion(Rz) 1.456 65.5
Mode 3 y- direction 0.769 65.7
53
Structural Modeling Of One Way Ribbed Slabs
  • Also the same span taken in the beam C and the
    following are the values of moment and shear from
    envelope combination

Model 1
Point Envelope combination Envelope combination Envelope combination Envelope combination
Point moment shear As(mm2) Av/s (mm2/mm)
C2 316.0 243.7 1359.4 0.422
C2-C3 208.6 16.3 1053 0
C3 371.1 268.5 1613 0.545
Model 2
Point Envelope combination Envelope combination Envelope combination Envelope combination
Point moment shear As(mm2) Av/s (mm2/mm)
C2 329.7 259.6 1422 0.5
C2-C3 211.0 17.7 899.1 0
C3 377.9 286.4 1645 0.634
Model3
Point Envelope combination Envelope combination Envelope combination Envelope combination
Point moment shear As(mm2) Av/s (mm2/mm)
C2 317.6 243.0 1367 0.418
C2-C3 209.1 16.2 891.3 0
C3 373.6 274.1 1625 0.573
54
Structural Modeling Of One Way Ribbed Slabs
  • Final conclusion
  • from the previous data shown in tables we note
    that all the three models give near results.
  • So, we can represent the slab model by any of the
    previous models but perform the changes in loads
    assignment and stiffness modifiers.

55
Thanks for your attention
Write a Comment
User Comments (0)
About PowerShow.com