Jean-Pierre Colinge - PowerPoint PPT Presentation

About This Presentation
Title:

Jean-Pierre Colinge

Description:

Title: No Slide Title Author: Colinge Last modified by: Colin-Pierre Colinge Created Date: 8/9/2000 11:56:34 PM Document presentation format: A4 Paper (210x297 mm) – PowerPoint PPT presentation

Number of Views:287
Avg rating:3.0/5.0
Slides: 59
Provided by: Coli94
Category:

less

Transcript and Presenter's Notes

Title: Jean-Pierre Colinge


1
SOI Technology Overview and Device Physics
Jean-Pierre Colinge University of
California Davis, CA, USA
2
Outline
? Introduction (Where SOI Technology stands
today) ? SOI Materials (SOS, SIMOX, Wafer
Bonding, Unibond) ? The Classical SOI MOSFET
(Partially/Fully Depleted) ? Other SOI MOSFETs
(Hybrid, Double Gate, Ground Plane,
multiple gates) ? SOI Circuits (Hi-T,
Low-Power, RAMs)
3
Outline
? Introduction (Where SOI Technology stands
today) ? SOI Materials (SOS, SIMOX, Wafer
Bonding, Unibond) ? The Classical SOI MOSFET
(Partially/Fully Depleted) ? Other SOI MOSFETs
(Hybrid, Double Gate, Ground Plane,
multiple gates) ? SOI Circuits (Hi-T,
Low-Power, RAMs)
4
MAINSTREAM
5
US Semiconductor Manufacturers Using SOI
IBM PD Microprocessor Motorola PD/FD
Microprocessor AMD PD/FD Microprocessor TI PD
Various HP PD Microprocessor Peregrine FD
(SOS) RF, logic, EEPROM analog,
Rad-hard Synova PD Rad-Hard Honeywell PD Hi-T
Rad-hard Lincoln Lab FD Low-power, Rad-hard
SOI news web site http//www.soisolutions.com
6
Advertisement page in USA Today, in Oct. 2000
IBM uses SOI and copper for its top-of-line
servers
7
(No Transcript)
8
(No Transcript)
9
Motorola
IBM
Power PC
Honeywell
CLEARWATER, FLA. FEBRUARY 4, 1999 - Honeywell
Space Systems and Motorola Semiconductor Products
Sector today announced a joint licensing
agreement for PowerPC technology for use in
Honeywell space processors. The result will be a
next generation space microprocessor which will
be radiation hardened to withstand the
destructive effects of space, will operate with
Power PC software and use less power. Internally,
Honeywell is referring to this next generation
microprocessor as the Space Processor Chip
(SpacePC). It combines the capabilities of the
advanced Motorola PowerPC 603e microprocessor
with Honeywells radiation and performance
enhancing Silicon On Insulator (SOI) technology.
10
Outline
? Introduction (Where SOI Technology stands
today) ? SOI Materials (SOS, SIMOX, Wafer
Bonding, Unibond) ? The Classical SOI MOSFET
(Partially/Fully Depleted) ? Other SOI MOSFETs
(Hybrid, Double Gate, Ground Plane,
multiple gates) ? SOI Circuits (Hi-T,
Low-Power, RAMs)
11
Silicon on Sapphire
12
Silicon on Sapphire
13
SIMOX
14
SIMOX
Silicon
Silicon
SIMOX, circa 1985
SIMOX, 1998
BOX
BOX
3,000 dislocations/cm2
1,000,000,000 dislocations/cm2
15
Wafer Bonding and Etch Back
16
Wafer Bonding
17
Smart-Cut / Unibond
18
Outline
? Introduction (Where SOI Technology stands
today) ? SOI Materials (SOS, SIMOX, Wafer
Bonding, Unibond) ? The Classical SOI MOSFET
(Partially/Fully Depleted) ? Other SOI
MOSFETs (Hybrid, Double Gate, Ground Plane,
multiple gates) ? SOI Circuits (Hi-T,
Low-Power, RAMs)
19
MOSFETs
Gate Oxide
Gate


Partially Depleted SOI
N
Source
N
Drain
Depletion zone
0.1-0.2 µm
Buried oxide
P- type silicon
Bulk
Fully Depleted SOI
20
Source and Drain Capacitance
-7
10
17
-3
Bulk, N
10
cm
B

SOI, P
drain on P-substrate,
15
-3
t
400 nm, N
10
cm
-8
BOX
B
10
Drain capacitance (F/cm2)

SOI, N
drain on P-substrate,
15
-3
t
400 nm, N
10
cm
BOX
B
-9
10
0
1
2
3
4
5
Supply voltage (V)
21
SOI MOSFET a few definitions
V
g1
V
ds
Gate
t
ox1


FD 30-80 nm PD100-200 nm
P
Source (N
)
Drain (N
)
t
s
i
t
ox2
Buried oxide
60-400 nm
Back gate (mechanical substrate)
V
g2
22
Field Isolation
LOCOS
Mesa
STI
23
Edge Leakage
24
Edge Leakage Elimination And Body Ties
A Regular SOI MOSFET B Edgeless device
Body ties in source
A Lateral body tie B H-gate body tie
25
SOI MOSFET DIBL
or Drain-Induced Barrier Lowering
Electric field lines from the drain encroach on
the channel region. Any increase of drain voltage
decreases the threshold voltage (the NPN
potential barrier between source and drain is
lowered).
E-field lines
26
SOI MOSFET
PDSOI MOSFET
FDSOI MOSFET
Pro better VTH control Con floating substrate
effects Remedy Body tie
Pro better electrical properties Con worse VTH
control Remedy Uniform SOI material
OFFSPRING
OFFSPRING
Hybrid (DTMOS, MTCMOS)
Double gate Multiple gate Buried ground plane
electrode
s VTH lt 9 mV in literature
27
PDSOI MOSFET
Front Gate
Source
Drain
Back Gate
28
PDSOI MOSFET Kink Effect
Front Gate
1. Impact ionization 2. Hole injection in
floating substrate 3. Forward bias diode 4.
Increase of floating body potential 5. Reduces
VTH 6. Increases current
1
2
Source
Drain
3
4
Back Gate
29
PDSOI MOSFET Kink Effect
Current is increased (GOOD!) Output
conductance (or Early voltage) is very poor (BAD!)
Drain Current
Drain Voltage
30
SOI MOSFET Single-Transistor Latchup
Front Gate
Source
Drain
Back Gate
Illustration of the single-transistor latch.
"Normal" subthreshold slope at low drain voltage
(a), infinite subthreshold slope and hysteresis
(b), and device "latch-up" (c).
31
PDSOI MOSFET floating-body effects
Front Gate
250 ms
VG
Source
Drain
ID
Floating body
20 ms
VG
Back Gate
ID
This is only one example among MANY!
32
MOSFET Equations Body Factor
Non saturation
Saturation
Subthreshold swing
Gain (weak inversion)
Gain (strong inversion)
33
Gate - Channel Coupling
Body factor n 1.5 in Bulk n 1.05... in
FDSOI
34
-6
-7
-8
-9
-10
-11
-12
35
Microwave SOI MOSFETs
Noise figure /

f

f

SOI
L
V

I

max
T
D
D
Associated gain

material
(µm)
(GHz)
(GHz)
(dB) at 2GHz
(V)
(mA)

BESOI


1


-


-


-


14


5 / 6.4
SIMOX

1


-


-


-


11


5 / 4.4
SOS


0.35

3


10


23


56


- / -
SIMOX

0.32

3


33


14


21


3 / 13.4
SIMOX

0.25

3


41


23.6

32


1.5 / 17.5
SIMOX

0.75

0.9


3


10


11


1.5 / 9
SIMOX

0.75

0.9


10


12.9

30


- / 13.9 (10.4)
SIMOX

0.3


2


-


-


24.3

0.9 / 14
SOS


0.5


2


2


26


60


1.7 / 16.3
SIMOX

0.2


2


125 28.4

46


1/15.3

SIMOX

0.07

1.5


5


150

Unibond

0.25

1.5




50

75
() Metal-gate technology is used () at 3 GHz
and () at 5 GHz.
36
Rather unsophisticated device tox 30 nm
37
Outline
? Introduction (Where SOI Technology stands
today) ? SOI Materials (SOS, SIMOX, Wafer
Bonding, Unibond) ? The Classical SOI MOSFET
(Partially/Fully Depleted) ? Other SOI MOSFETs
(Hybrid, Double Gate, Ground Plane,
multiple gates) ? SOI Circuits (Hi-T,
Low-Power, RAMs)
38
Hybrid bipolar-MOS aka DTMOS (Dual-Threshold
MOS) aka MTCMOS (Multiple-Threshold CMOS)
39
Leff,N 0.45 mm, Leff,P 0.58 mm (1987)
Leff,N Leff,P 0.3 mm (1994)
40
(Double-Gate MOSFET)
41
Double-Gate SOI MOSFET Volume Inversion
42
20C
P-channel
N-channel
300C
300C
200C
200C
W L 3µm
43
Ground Plane SOI MOSFET
E-field lines
E-field lines
"The ground-plane concept for the reduction of
short-channel effects in fully depleted SOI
devices", Ernst, T., and Cristoloveanu, S.,
Electrochemical Society Proceedings 99-3, p. 329,
1999
44
Ground-Plane SOI MOSFET
P implanted ground plane (in Si wafer)
45
Ground-Plane SOI MOSFET
Equipotentials (Regular SOI MOSFET)
Equipotentials (Ground-Plane SOI MOSFET)
46
Regular FD SOI vs. Ground-Plane FD SOI
Regular SOI MOSFET
Regular SOI MOSFET
Ground-Plane SOI MOSFET
Ground-Plane SOI MOSFET
47
Double-Gate SOI MOSFET
E-field lines
E-field lines
J.P. Colinge, M.H. Gao, A. Romano, H. Maes and C.
Claeys, Technical Digest of IEDM, p. 595, 1990
48
Multiple-Gate SOI MOSFETsc
Different gate configurations for SOI devices
1) single gate 2) double gate 3) triple gate
4) quadruple gate (or gate-all-around
structure) 5) ?-gate MOSFET.
49
Multiple-Gate SOI MOSFETsc
G
a
t
e
l
e
n
g
t
h
(
n
m
)
DIBL in fully depleted SOI MOSFETs with different
gate structures and different effective gate
lengths. VDS 100 mV.
50
Outline
? Introduction (Where SOI Technology stands
today) ? SOI Materials (SOS, SIMOX, Wafer
Bonding, Unibond) ? The Classical SOI MOSFET
(Partially/Fully Depleted) ? Other SOI MOSFETs
(Hybrid, Double Gate, Ground Plane,
multiple gates) ? SOI Circuits (Hi-T,
Low-Power, RAMs)
51
(No Transcript)
52
(No Transcript)
53
PD
FD
FD
hybrid
FD
hybrid
FD
PD
FD
54
(No Transcript)
55
DRAMs
DRAMs


Much lower rate of soft errors



Less junction leakage



Reduced bit line capacitance



Higher pass-transistor transfer efficiency

Storage capacitance can be reduced 2-3
Supply voltage can be reduced below 1 V
56
(No Transcript)
57
(No Transcript)
58
Conclusion
SOI now used in commercial products PD and FD
SOI MOSFET physics Advanced SOI MOSFET
structures
Write a Comment
User Comments (0)
About PowerShow.com