Title: AKSIYON POTANSIYEL
1AKSIYON POTANSIYEL
Dr. Ayse DEMIRKAZIK
2Organizmada iyonlarin dagilimi
- Hücre disi ortam Na ve Cl- iyonlarindan
- Hücre içi ortam K iyonlarindan zengindir
- Ayrica hücre içinde asla hücreyi terk edemeyen
negatif yüklü protein anyonlar vardir - Normal hücre zari Ka Na a 100 kat daha
geçirgendir
3Nernst (denge) potansiyeli
- Iyonlarin konsantrasyon gradyanlarini elektriksel
olarak ifade eder - Difüzyon potansiyeli ile konsantrasyon farkinin
iliskisine dayanir - Membranin iki tarafindaki potansiyel farki, bir
iyonun membrandan bir yönde net difüzyonunu
önleyecek düzeyde ise, bu potansiyele o iyon için
Nernst potansiyeli denir
4Na, K ve Cl- için Nernst
- Hücre içi 90mV olmak üzere sadece sodyumun net
difüzyonunun durmasi için içerideki potansiyelin
61.5mV olmasi gerekir - Yani membranla en büyük problemi sodyum
yasamaktadir
5Temel potansiyel mantigi
- K ve Clun Nernst denge potansiyelleri istirahat
potansiyeline çok yakindir - Bu nedenle membrani rahatlikla geçebilirler
6Denge potansiyelleri
- Memeli spinal motor nöronuna ait degerler
7Membran potansiyelinin siniri
- Membrandan uzak yerlerde yükler tamamen birbirine
esittir - Elektriksel potansiyel farki tamamen membranin
iki tarafinda ortaya çikar
8Membran potansiyelinin olusmasi için
- Membranin iki tarafinda farkli konsantrasyonlarda
iyonlarin bulunmasi - Membranin iyonlara seçici geçirgenlik göstermesi
(K/Na100) - Her bir iyonun elektriksel yükünün çesidi
9Gibbs-Donnan Dengesi
- Membranin bir tarafinda membrandan geçemeyen iyon
bulundugu zaman, geçebilen iyonlarin dagilimini
etkiler
10Na-K pompasi
- Hücrelerde devamli bir Na-K sizmasi söz
konusudur. - Bu devam ederse hücre siser ve ölür.
- Pompa enerji harcayarak 3Na-2K prensibi ile
çalisir.
11Membran dinlenim potansiyeli
- Iyonlarin farkli dagilimi
- Membranin seçici geçirgenligi
- Donnan dengesi
- Na-K pompasinin özelligi sayesinde bir dengeye
ulasir
12sonuç
- Membrandan uzak bölgelerde tamamen bir iyonik
denge mevcuttur - Membranin her iki tarafinda konsantrasyonlari
farkli iyonlar vardir - Membran seçici geçirgendir ve geçirgenlikleri
farklidir - Bazi hücre içi anyonlar membrani geçemezler
- Na-K pompasi diye bir sey vardir
13Aksiyon potansiyeli
- Laboratuar ortaminda elektriksel olan uyari
- Organizmada
- Elektriksel,
- Hormonal,
- Mekanik ve
- Kimyasal
- uyaranlarla olur
14Neurons (Nerve Cells)
Figure 11.4b
15Istirahat halinin bozulmasi
- Iç kisim disa göre daha negatif (-70/-90mV)
- Yeterli büyüklükte uyaran
- Kritik degere kadar depolarizasyon
- Aksiyon potansiyeli
16(No Transcript)
17Membran ve Sodyum
- Yeterli büyüklükte uyaran
- Membranin Na iyonlarina karsi geçirgenliginde
voltaja bagli artis (aktivasyon) - Voltaja bagli inaktivasyon
18Esik deger yoksa AP de yokhep ya da hiç
- Hücre membranini esik degere kadar depolarize
edemeyen uyaranlar AP olusturamaz - Esik ya da esik üstü uyaranlar da daima ayni
genlik ve sekle sahip AP olusturur
19Aslinda ne oldu?
- Istirahat halinde membran temel olarak K
iyonlarina karsi yüksek geçirgenlik gösterir - Bu nedenle istirahat potansiyeli K denge
potansiyeline yakindir - Esik degere kadar depolarize edildiginde
- Naa karsi olan membran geçirgenliginde
milisaniyelerle sinirli bir artis ortaya çikar - Membran Naun denge potansiyeline dogru çekilir
yani membran pozitif degerlere dogru hizla
depolarize olur
20Geriye dönüs- Repolarizasyon
- Depolarizasyon ile denge durumundan uzaklasan K,
membrani tekrar kendi dinlenim potansiyeline
dogru tasimak için - Hücre disina akar
- Bu sayede membran tekrar K membrani karakterini
kazanir
21AP dönemleri
- Dinlenim (istirahat) dönemi
- Depolarizasyon dönemi
- Repolarizasyon dönemi
- Hiperpolarizasyon dönemi
22Hodgkin çemberi
- feed back bir olaydir
- Esik degere ulastiktan sonra hizla içeri giren
Na, voltaji daha da yukarilara çeker - Voltaj yükseldikçe daha fazla Na içeri akar, daha
fazla Naun içeri akmasi voltaji daha da
yukarilara tasir
23Hodgkin çemberi
24Kanallarin zamanlamalari
25Herkese lazim kanallar
- Na-K sizma kanallari
- Voltaj kapili Na kanallari
- Voltaj kapili K kanallari
- Voltaj kapili Ca-Na kanallari
26Aksiyon potansiyeline katkilar
- Pek çok hücre Na-K pompasina benzer bir Na-Ca
pompasina sahiptir. - Pompa, kalsiyumu hücre içinden disina ve/veya
endoplazmik retikuluma pompalar.
- Bu pompa sayesinde hücre içi ile disi arasinda
disarda fazla olmak üzere 10 000 katlik bir
gradiyent yaratilir. - Bu sayede hücre içi kalsiyumu 10-7 molarda
tutulurken, hücre disinda 10-3 molarda tutulur.
27Bir gariplik var!!!
- Membran potansiyeli istirahat durumuna geri
döndügünde her sey normal degildir. - Na-K iyonlarinin yerleri terstir.
- YASASIN POMPA!!!
28Yeniden uyarilma-Reeksitasyon
- Mutlak refrakter periyod
- Voltaj kapili Na kanallarinin yapisi ile ilgili
bir durumdur - APden sonra yeniden açilabilmeleri için mutlaka
baslangiç konumlarina dönmeleri gerekir - Relatif refrakter periyod
- Esik üstü uyaranlarla AP meydana gelebilir
29Saniyenin dilimlerinde...
- Çok kisa süre içinde,
- Çok hizli bir sekilde,
- Iletisim kurmanin,
- bilgi alma,
- yorumlama ve
- gerekli cevaplarin iletmesinin en iyi yolu...
Aksiyon potansiyeli Iyi fikir!!!
30Operation of a Gated Channel
Figure 11.6a
31Operation of a Voltage-Gated Channel
32Gated Channels
- When gated channels are open
- Ions move quickly across the membrane
- Movement is along their electrochemical gradients
- An electrical current is created
- Voltage changes across the membrane
33Electrochemical Gradient
- Ions flow along their chemical gradient when they
move from an area of high concentration to an
area of low concentration - Ions flow along their electrical gradient when
they move toward an area of opposite charge - Electrochemical gradient the electrical and
chemical gradients taken together
34Resting Membrane Potential (Vr)
- The potential difference (70 mV) across the
membrane of a resting neuron - It is generated by different concentrations of
Na, K, Cl?, and protein anions (A?) - Ionic differences are the consequence of
- Differential permeability of the neurilemma to
Na and K - Operation of the sodium-potassium pump
35Resting Membrane Potential (Vr)
Figure 11.8
36Membrane Potentials Signals
- Used to integrate, send, and receive information
- Membrane potential changes are produced by
- Changes in membrane permeability to ions
- Alterations of ion concentrations across the
membrane - Types of signals graded potentials and action
potentials
37Changes in Membrane Potential
- Changes are caused by three events
- Depolarization the inside of the membrane
becomes less negative - Repolarization the membrane returns to its
resting membrane potential - Hyperpolarization the inside of the membrane
becomes more negative than the resting potential
38Changes in Membrane Potential
Figure 11.9
39Graded Potentials
- Short-lived, local changes in membrane potential
- Decrease in intensity with distance
- Their magnitude varies directly with the strength
of the stimulus - Sufficiently strong graded potentials can
initiate action potentials
40Graded Potentials
Figure 11.10
41(No Transcript)
42Graded Potentials
- Voltage changes in graded potentials are
decremental - Current is quickly dissipated due to the leaky
plasma membrane - Can only travel over short distances
43Conduction of Action Potentials
Figure 8-14a Conduction of action potentials
44Conduction of Action Potentials
Figure 8-14b Conduction of action potentials
45Conduction of Action Potentials
Figure 8-14c Conduction of action potentials
46Speed of Conduction
- Larger diameter faster conduction
- Myelinated axon faster conduction
- Salutatory conduction
- Disease damage to myelin
- Chemicals that block channels
- Alteration of ECF ion concentrations
47Speed of Conduction
Figure 8-16b Axon diameter and speed of
conduction
48Speed of Conduction
Figure 8-17 Saltatory conduction
49Graded Potentials
Figure 11.11
50Action Potentials (APs)
- A brief reversal of membrane potential with a
total amplitude of 100 mV - Action potentials are only generated by muscle
cells and neurons - They do not decrease in strength over distance
- They are the principal means of neural
communication - An action potential in the axon of a neuron is a
nerve impulse
51Action Potential Resting State
- Na and K channels are closed
- Leakage accounts for small movements of Na and
K - Each Na channel has two voltage-regulated gates
- Activation gates closed in the resting state
- Inactivation gates open in the resting state
Figure 11.12.1
52Action Potential Depolarization Phase
- Na permeability increases membrane potential
reverses - Na gates are opened K gates are closed
- Threshold a critical level of depolarization
(-55 to -50 mV) - At threshold, depolarization becomes
self-generating
53Action Potential Repolarization Phase
- Sodium inactivation gates close
- Membrane permeability to Na declines to resting
levels - As sodium gates close, voltage-sensitive K gates
open - K exits the cell and internal negativity of
the resting neuron is restored
54Action Potential Hyperpolarization
- Potassium gates remain open, causing an excessive
efflux of K - This efflux causes hyperpolarization of the
membrane (undershoot) - The neuron is insensitive to stimulus and
depolarization during this time
55Action Potential Role of the Sodium-Potassium
Pump
- Repolarization
- Restores the resting electrical conditions of the
neuron - Does not restore the resting ionic conditions
- Ionic redistribution back to resting conditions
is restored by the sodium-potassium pump
56Phases of the Action Potential
- 1 resting state
- 2 depolarization phase
- 3 repolarization phase
- 4 hperpolarization
57Propagation of an Action Potential (Time 0ms)
- Na influx causes a patch of the axonal membrane
to depolarize - Positive ions in the axoplasm move toward the
polarized (negative) portion of the membrane - Sodium gates are shown as closing, open, or closed
58Propagation of an Action Potential (Time 0ms)
59Propagation of an Action Potential (Time 1ms)
- Ions of the extracellular fluid move toward the
area of greatest negative charge - A current is created that depolarizes the
adjacent membrane in a forward direction - The impulse propagates away from its point of
origin
60Propagation of an Action Potential (Time 1ms)
61Propagation of an Action Potential (Time 2ms)
- The action potential moves away from the stimulus
- Where sodium gates are closing, potassium gates
are open and create a current flow
62Propagation of an Action Potential (Time 2ms)
63Threshold and Action Potentials
- Threshold membrane is depolarized by 15 to 20
mV - Established by the total amount of current
flowing through the membrane - Weak (subthreshold) stimuli are not relayed into
action potentials - Strong (threshold) stimuli are relayed into
action potentials - All-or-none phenomenon action potentials either
happen completely, or not at all
64Coding for Stimulus Intensity
- All action potentials are alike and are
independent of stimulus intensity - Strong stimuli can generate an action potential
more often than weaker stimuli - The CNS determines stimulus intensity by the
frequency of impulse transmission
65Coding for Stimulus Intensity
- Upward arrows stimulus applied
- Downward arrows stimulus stopped
66Coding for Stimulus Intensity
- Length of arrows strength of stimulus
- Action potentials vertical lines
67Absolute Refractory Period
- Time from the opening of the Na activation gates
until the closing of inactivation gates - The absolute refractory period
- Prevents the neuron from generating an action
potential - Ensures that each action potential is separate
- Enforces one-way transmission of nerve impulses
68Absolute Refractory Period
69Relative Refractory Period
- The interval following the absolute refractory
period when - Sodium gates are closed
- Potassium gates are open
- Repolarization is occurring
- The threshold level is elevated, allowing strong
stimuli to increase the frequency of action
potential events
70Conduction Velocities of Axons
- Conduction velocities vary widely among neurons
- Rate of impulse propagation is determined by
- Axon diameter the larger the diameter, the
faster the impulse - Presence of a myelin sheath myelination
dramatically increases impulse speed
71Saltatory Conduction
- Current passes through a myelinated axon only at
the nodes of Ranvier - Voltage-gated Na channels are concentrated at
these nodes - Action potentials are triggered only at the nodes
and jump from one node to the next - Much faster than conduction along unmyelinated
axons
72Saltatory Conduction
Figure 11.16
73Multiple Sclerosis (MS)
- An autoimmune disease that mainly affects young
adults - Symptoms include visual disturbances, weakness,
loss of muscular control, and urinary
incontinence - Nerve fibers are severed and myelin sheaths in
the CNS become nonfunctional scleroses - Shunting and short-circuiting of nerve impulses
occurs
74Multiple Sclerosis Treatment
- The advent of disease-modifying drugs including
interferon beta-1a and -1b, Avonex, Betaseran,
and Copazone - Hold symptoms at bay
- Reduce complications
- Reduce disability