Title: Comprehensive Ultrasound Research Platform
1Comprehensive Ultrasound Research Platform
- Emma Muir
- Sam Muir
- Jacob Sandlund
- David Smith
- Advisor Dr. Sánchez
- Co-advisor Dr. Irwin
2Outline
- Introduction
- System
- Block Diagram / Functional Description
- Requirements
- Progress
2
3Outline
- Introduction
- System
- Block Diagram / Functional Description
- Requirements
- Progress
3
3
4Ultrasound Introduction
- Piezoelectric Transducer
- Pulse Excitation
- Changes in density reflect waves
4
5Objective
- Create an Ultrasound Research Platform
- Image Creation
- Multi-pin
- Beamforming
- Sigma Delta Architecture
- 1-bit ADC
- Arbitrary Waveforms
- Coded excitation signals
- Configurable delays
5
5
6Motivation
- Improve Ultrasound Techniques
- Medical Applications
- Detecting tumors and abnormalities
- Future Research
6
6
7Significance
- Test codes (arbitrary) for better imaging
- Multi-pin to allow Beamforming
- Architecture reduces cost and size
- RASMUS
- Two 19 inch racks
- Sigma Delta vs. 12 bit DAC
7
7
8Outline
- Introduction
- System
- Block Diagram / Functional Description
- Requirements
- Progress
8
8
9Block Diagram
9
10PC Data Processing
10
11Outline
- Introduction
- System
- Block Diagram / Functional Description
- Requirements
- Progress
11
11
12System Requirements
- Up to 8 transducer channels
- Excitations lt 3 µs
- Time-bandwidth product of 40
- High frequency design
- Signal to noise ratio (SNR) gt 50 dB
12
13Sigma Delta Modulation
- lt 10 MSE
- 500 M samples/second
- Trade off
- Accuracy vs. Stability
- OSR 16 (must be a power of 2)
- Order 2nd
14FPGA Requirements
- Store data on DDR2
- 62.5 MHz
- 8 waveforms
- 1536 bits per waveform
- Output Data
- 8 Individualized Pins
- Delays of up to 5 ms
- 500 MHz
14
15FPGA to PC Communication
- UART
- 115200 baud
- Send waveform data
- Assign waveform to pins
- Assign delay to pins
- Start transmission
15
16Graphical User Interface (GUI)
- Data Processing
- Less than 2 minutes
- Display an image
- Depths between 0.25 cm and 30 cm.
- Adjust contrast
16
17Outline
- Introduction
- System
- Block Diagram / Functional Description
- Requirements
- Progress
17
17
18Progress
18
18
19Progress
19
19
20Amplifier Progress
- Different designs examined
- H-Bridge
- 2 MOSFETs
- Push-pull RF MOSFET
- 1 MOSFET
- N-channel RF MOSFET
- Final Design
20
20
21Amplifier Progress
- Discuss problems/solutions
22Amplifier Progress
23Amplifier Progress
24Amplifier Progress
25Amplifier Progress
26Amplifier Progress
27T/R Switch Progress
28T/R Switch Progress
1.92V
29PCB Progress
- Footprints
- TX810
- Transmit/ReceiveSwitch
- RF MOSFET
- Set INTO board
30Progress
30
30
31Progress
31
31
32Progress
32
32
33FPGA Progress
- Arbitrary transmission
- Output verified
- 500 MHz
- Multi-pin
- Currently 4
- Adjustable
- Arbitrary length
- Must be 256 bit pieces
- Adjustable delays of lt 33 ms
33
33
34FPGA Flowchart Progress
34
34
35FPGA Remaining
- Fix storing waveform data from UART
- Inconsistent results
- Increase delays precision
- After data retrieved
- Make output more exact
- Change to 8 pins
35
35
36Progress
36
36
37UART Progress
- UART
- 115200 baud works
- PC to FPGA Communication
- Start transmission signal
- Set waveforms to pins
- Set delays for pins
- Waveform data
- Inconsistent
37
37
3838
38
39Waveform GUI Features
- Multiple selection
- Automatic pin settings removal
- Save/Load settings
- Check files exist when loading settings
- Let None represent an array of 0s
39
40Progress
40
40
41FPGA Results
Delayed
Voltage
Time (s)
Cross-talk
Cross-talk
Voltage
Time (s)
41
41
42FPGA Results
Normalized Correlation
Max Corr. 0.97
Sample number
42
42
43FPGA Results
43
43
44FPGA Results
44
44
45FPGA Results
45
45
46Progress
46
46
47Analog Front End Results
Source Analog Devices UG-016 http//www.analog.co
m/static/imported-files/user_guides/UG-016.pdf
47
47
48Alternatives
- Analog Front End
- 12 bit resolution
- 80 MSPS
- Lecroy High Speed Oscilloscope
- 725Zi
- 8 bit Resolution
- 20 GSPS
- 4 Channels
48
48
49Progress
49
49
50Progress
50
50
51Beamforming
Sensors
Focal Point
Point
Delay based on distance from point to sensor and
distance from sensor to focal point Note No
delay at the Focal Point
51
52Without Beamforming
With Beamforming
53Attenuation
- Average frequency attenuation in tissue
- 0.5 dB/cm/MHz
- 5e-5 dB/m/Hz
- Doubled for ultrasound imaging
- Frequency 8MHz
- Maximum depth 30cm
- Maximum attenuation 240dB
- Image dB range 0dB to -50dB
54Time Gain Compensation
- Based on depth of point in image
- Att 1dB/cm/MHz
- TGC AttDepth8MHz
- Add to compensate
- Note that this increases white noise for larger
depths
54
55Progress
55
55
56Sigma Delta Representation
56
57Without Pre-Enhanced Magnitude
Correlation 0.9763
57
58Pre-Enhanced Magnitude
58
59With Pre-Enhanced Magnitude
Correlation 0.9916
59
60Sigma Delta Features
- Easy to modify
- Frequency
- Period
- Waveform equation
- Number of samples
- Pre-Enhanced Magnitude
- Checks/displays correlation
- Writes output to a file as 0s and 1s
60
61Sigma Delta Additions
- GUI interface for entering
- Frequency
- Period
- Waveform equation
- Select location to save file
- Interface with Waveform GUI
61
62REC Results
- MATLAB simulation
- 150 of original bandwidth
- Linear chirp frequencies
- 1.14 times the bandwidth
- Reduce side-lobes during pulse compression
- Apply to finished system
62
6363
6464
65Pulse Compression Results
- MATLAB simulation
- Wiener filter
- SNR of 60 dB
- Input is REC pre-enhanced chirp
- Varied Smoothing Factor (SF)
- Operating Point
65
6666
67Field II Simulations
REC Excitation and Pulse Compression SF 0.1
Impulse Excitation
67
67
68Progress
68
68
69MATLAB GUI Features
- Depth from 2mm to 231mm
- Max dB range from 10dB to 60dB
- Update chart settings automatically
- Update data in 54s
69
70MATLAB GUI
71MATLAB GUI
72MATLAB GUI Additions
- Depth from 2mm to 300mm
- Restrict max dB to 40dB to 60dB
- Allow user to type value or scroll
- Minimize update time
- Convert to C
72
73Progress
73
73
74Progress
74
74
75Progress
75
75
76Additional Information
- Visit http//cegt201.bradley.edu/projects/
- proj2011/ultra/index.html
77Acknowledgments
- The authors would like to thank Analog Devices
and Texas instruments for their donation of
parts. - This work is partially supported by a grant from
Bradley University (13 26 154 REC) - Dr. Irwin
- Dr. Lu
- Mr. Mattus
- Mr. Schmitt
- Andy Fouts
77
78References
- 1 J. A. Zagzebski, Essentials of Ultrasound
Physics, St. Louis, MO Mosby, 1996. - 2 R. Schreier and G. C. Temes. Understanding
Delta-Sigma Data Converters, John - Wiley Sons, Inc., 2005.
- 3 R. Schreier, The Delta-Sigma Toolbox Version
7.3. Analog Devices, Inc, 2009. - 4 T. Misaridis and J. A. Jensen. Use of
Modulated Excitation Signals in - Medical Ultrasound, IEEE Trans. Ultrason.,
Ferroelectr. Freq. Contr., vol. 52, no. 2, - pp. 177-191, Feb. 2005.
- 5 M. Oelze. Bandwidth and Resolution
Enhancement - Through Pulse Compression, IEEE Trans.
Ultrason., Ferroelectr. Freq. Contr., vol. 54, - no. 4, pp. 768-781, Apr. 2007.
- 6 Mitzner, Kraig. Complete PCB Design Using
OrCad Capture and PCB Editor, - Newnes, 2009.
78
79References Cont.
- 7 Montrose, Mark I. Printed Circuit Board
Design Techniques For EMC Compliance - A Handbook for Designers, Wiley-IEEE Press, 2000.
- 8 J.A. Jensen. Field A Program for Simulating
Ultrasound Systems, Paper presented - at the 10th Nordic-Baltic Conference on
Biomedical Imaging Published in Medical - Biological Engineering Computing, pp. 351-353,
Volume 34, Supplement 1, Part 1, - 1996.
- 9 Kai E. Thomenius. Evolution of Ultrasound
Beamformers, IEEE Trans. Ultrason., - Ferroelectr. Freq. Contr., pp. 1615-1622, 1996.
- 10 J.A. Jensen and N. B. Svendsen. Calculation
of pressure fields from arbitrarily - shaped, apodized, and excited ultrasound
transducers, IEEE Trans. Ultrason., - Ferroelec., Freq. Contr., 39, pp. 262-267, 1992.
- 11 Kjærgaard, Nina. "RASMUS." Center for Fast
Ultrasound Imaging. Technical - University of Denmark, 28 Sept. 2010. Web. 25
Feb. 2011. - lthttp//www.dtu.dk/centre/cfu/English/research/fac
ilities/RASMUS.aspxgt.
79
80Questions?
80
81Without TGC
With TGC
81
82Using Delta as the Excitation Signal
Using REC (chirp)