QTL Mapping in Natural Populations - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

QTL Mapping in Natural Populations

Description:

QTL Mapping in Natural Populations Basic theory for QTL mapping is derived from linkage analysis in controlled crosses There is a group of species in which it is not ... – PowerPoint PPT presentation

Number of Views:93
Avg rating:3.0/5.0
Slides: 18
Provided by: gcho7
Learn more at: https://www.psu.edu
Category:

less

Transcript and Presenter's Notes

Title: QTL Mapping in Natural Populations


1
QTL Mapping in Natural Populations
  • Basic theory for QTL mapping is derived from
    linkage analysis in controlled crosses
  • There is a group of species in which it is not
    possible to make crosses
  • QTL mapping in such species should be based on
    existing populations

2
Association between marker and QTL
Linkage disequilibrium mapping natural
population
  • -Marker, Prob(M)p, Prob(m)1-p
  • -QTL, Prob(A)q, Prob(a)1-q
  • Four haplotypes
  • Prob(MA)p11pqD pp11p10
  • Prob(Ma)p10p(1-q)-D qp11p01
  • Prob(mA)p01(1-p)q-D Dp11p00-p10p01
  • Prob(ma)p00(1-p)(1-q)D

3
Joint and conditional (?ji) genotype prob.
between marker and QTL
  • AA Aa aa Obs
  • MM p112 2p11p10 p102 n2
  • Mm 2p11p01 2(p11p00p10p01) 2p10p00 n1
  • mm p012 2p01p00 p002 n0
  • MM p112 2p11p10 p102 n2
  • p2 p2 p2
  • Mm 2p11p01 2(p11p00p10p01) 2p10p00 n1
  • 2p(1-p) 2p(1-p)
    2p(1-p)
  • mm p012 2p01p00 p002 n0
  • (1-p)2 (1-p)2 (1-p)2

4
Mixture model-based likelihoodwith marker
information
Linkage disequilibrium mapping natural
population
  • L(?y,M)?i1n?2if2(yi) ?1if1(yi)
    ?0if0(yi)
  • Sam- Height Marker genotype QTL genotype
  • ple (cm, y) M AA Aa aa
  • 1 184 MM (2) ?22i ?12i ?02i
  • 2 185 MM (2) ?22i ?12i ?02i
  • 3 180 Mm (1) ?21i ?11i ?01i
  • 4 182 Mm (1) ?21i ?11i ?01i
  • 5 167 Mm (1) ?21i ?11i ?01i
  • 6 169 Mm (1) ?21i ?11i ?01i
  • 7 165 mm (0) ?20i ?10i ?00i
  • 8 166 mm (0) ?20i ?10i ?00i

Prior prob.
5
Conditional probabilities of the QTL genotypes
(missing) based on marker genotypes (observed)
Linkage disequilibrium mapping natural
population
  • L(?y,M)
  • ?i1n ?2if2(yi) ?1if1(yi) ?0if0(yi)
  • ?i1n2 ?22if2(yi) ?12if1(yi)
    ?02if0(yi) Conditional on 2 (n2)
  • ? ?i1n1 ?21if2(yi) ?11if1(yi)
    ?01if0(yi) Conditional on 1 (n1)
  • ? ?i1n0 ?20if2(yi) ?10if1(yi)
    ?00if0(yi) Conditional on 0 (n0)

6
Normal distributions of phenotypic values for
each QTL genotype group
Linkage disequilibrium mapping natural
population
  • f2(yi) 1/(2??2)1/2exp-(yi-?2)2/(2?2),
  • ?2 ? a
  • f1(yi) 1/(2??2)1/2exp-(yi-?1)2/(2?2),
  • ?1 ? d
  • f0(yi) 1/(2??2)1/2exp-(yi-?0)2/(2?2),
  • ?0 ? - a

7
Differentiating L with respect to each unknown
parameter, setting derivatives equal zero and
solving the log-likelihood equations
Linkage disequilibrium mapping natural
population
  • L(?y,M) ?i1n?2if2(yi) ?1if1(yi)
    ?0if0(yi)
  • log L(?y,M) ?i1n log?2if2(yi) ?1if1(yi)
    ?0if0(yi)
  • Define
  • ?2i ?2if1(yi)/?2if2(yi) ?1if1(yi)
    ?0if0(yi) (1)
  • ?1i ?1if1(yi)/?2if2(yi) ?1if1(yi)
    ?0if0(yi) (2)
  • ?0i ?0if1(yi)/?2if2(yi) ?1if1(yi)
    ?0if0(yi) (3)
  • ?2 ?i1n(?2iyi)/ ?i1n?2i (4)
  • ?1 ?i1n(?1iyi)/ ?i1n?1i (5)
  • ?0 ?i1n(?0iyi)/ ?i1n?0i (6)
  • ?2 1/n?i1n?2i(yi-?2)2?1i(yi-?1)2?0i(yi-?0
    )2 (7)

8
  • Complete data Prior prob
  • QQ Qq qq Obs
  • MM p112 2p11p10 p102 n2
  • Mm 2p11p01 2(p11p00p10p01) 2p10p00 n1
  • mm p012 2p01p00 p002 n0
  • QQ Qq qq Obs
  • MM n22 n21 n20 n2
  • Mm n12 n11 n10 n1
  • mm n02 n01 n00 n0
  • p112n22 (n21n12) ?n11/2n,
  • p102n20 (n21n10) (1-?)n11/2n,
  • p012n02 (n12n01) (1-?)n11/2n,
  • p112n00 (n10n01) ?n11/2n,
    ?p11p00/(p11p00p10p01)

9
  • Incomplete (observed) data
  • Posterior prob
  • QQ Qq qq Obs
  • MM ?22i ?12i ?02i n2
  • Mm ?21i ?11i ?01i n1
  • mm ?20i ?10i ?00i n0
  • p11?i1n2(2?22i?12i)?i1n1(?21i??11i)/2n
    , (8)
  • p10?i1n2(2?02i?12i)?i1n1?01i(1-?)?11i
    /2n, (9)
  • p01?i1n0(2?20i?10i)?i1n1?21i(1-?)?11i
    /2n, (10)
  • p00?i1n2(2?00i?10i)?i1n1(?01i??11i)/2n
    (11)

10
EM algorithm
  • (1) Give initiate values ?(0) (?2,?1,?0,?2,p11,p1
    0,p01,p00)(0)
  • (2) Calculate ?2i(1), ?1i(1) and ?0i(1) using
    Eqs. 1-3,
  • (3) Calculate ?(1) using ?2i(1), ?1i(1) and
    ?0i(1) based on
  • Eqs. 4-11,
  • (4) Repeat (2) and (3) until convergence.

11
Hypothesis Tests
  • Is there a significant QTL?
  • H0 µ2 µ1 µ1
  • H1 Not H0
  • LR1 -2ln L0 L1
  • Critical threshold determined from permutation
    tests

12
Hypothesis Tests
  • Can this QTL be detected by the marker?
  • H0 D 0
  • H1 Not H0
  • LR2 -2ln L0 L1
  • Critical threshold determined from chi-square
    table (df 1)

13
A case study from human populations
  • 105 black women and 538 white women
  • 10 SNPs genotyped within 5 candidates for human
    obesity
  • Two obesity traits, the amount of body fat (body
    mass index, BMI) and its distribution throughout
    the body (waist to hip circumference ratio, WHR)

14
Objective
  • Detect quantitative trait nucleotides (QTNs)
    predisposing to human obesity traits, BMI and WHR

15
  • BMI
  • SNP Chrom. Black White
  • ADRA1A 8p21 q 0.20
  • D 0.04
  • a 11.40
  • d -2.63
  • LR 3.90 NS
  • WHR
  • ADRB1 10q24 q 0.83
  • D -0.07
  • a -0.15
  • d -0.24
  • LR 5.91 NS
  • ADRB2 5q32-33 q 0.16
  • D 0.07
  • a 0.16
  • d -0.20

16
(No Transcript)
17
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com