Title: Hilbert-Huang Transform(HHT)
1Hilbert-Huang Transform(HHT)
- Presenter Yu-Hao Chen
- IDR98943021
- 2010/05/07
2Outline
- Author
- Motivation
- Hilbert Transform
- Instantaneous frequency(IF)
- Flow chart
- Theory
- Intrinsic Mode Function(IMF)
- Empirical Mode Decomposition(EMD)
- TimeFrequency analysis
- Application
- Problem
- Summary
-
3Norden E. Huang (??)
- Career and Experience
- Research Scientist, NASA (1975-2006)
- National Academy of Engineering (2000)
- Academia Sinica (2006)
- NASA Goddard Space Flight Center (2000-2006)
- Research Center for Adaptive Data Analysis (2006)
- Research topic
- Engineering Sciences
- Applied Mathematical Sciences
- Applied Physical Sciences
4Motivation
- To deal with nonlinear and non-stationary signal
- To get Instantaneous frequency(IF)
5
5Hilbert Transform
- The Hilbert transform can be thought of as the
convolution of s(t) with the function h(t)
1/(pt) - Derive the analytic representation of a signal
6Instantaneous Frequency(IF)
- s(t) ß cos(t)
- (1) ß 0 IF is the constant
- (2) 0 lt ß lt 1 IF has been oscillating
- (3) ß gt 1 IF has been negative
3
3
3
7Flow Chart
4
1
8Intrinsic Mode Function(IMF)
- The number of extrema and zero-crossings must
either be equal or differ at most by one. - The mean value of the upper envelope and the
lower envelope is zero.
5
9Empirical Mode Decomposition(EMD)(1/8)
1
10Empirical Mode Decomposition(EMD)(2/8)
1
11Empirical Mode Decomposition(EMD)(3/8)
1
12Empirical Mode Decomposition(EMD)(4/8)
1
13Empirical Mode Decomposition(EMD)(5/8)
1
14Empirical Mode Decomposition(EMD)(6/8)
4
1
15Empirical Mode Decomposition(EMD)(7/8)
1
Sifting Process
16Empirical Mode Decomposition(EMD)(8/8)
4
17Example
5
18TimeFrequency Analysis
- Fast Fourier Transform (FFT)
- Wavelet Transform
- Hilbert-Huang Transform (HHT)
19Application
- Geoscience
- Biomedical applications
- Multimodal Pressure Flow (MMPF)
- Financial applications
- Image processing
- Audio processing
- Structural health monitoring
20Geoscience
5
21Biomedical(1/2)
- Multimodal Pressure
- Flow (MMPF)
5
22Biomedical(2/2)
- Doppler blood flow signal analysis 14
- Detection and estimation of Doppler shift 15
23Image Processing
- Edge detection 10
- Image denoise 11
- Image fusion 12
24Problems of HHT
- P1 Stopping criterion
- P2 End effect problem
- Hilbert Transform
- EMD
- P3 Mode mixing problem
- Ensemble EMD (EEMD)
- Post-processing of EEMD
- P4 Speed of computing
- P5 Spline
25P1 Stopping Criterion
- Standard deviation(SD)
- SD 0.20.3
- S number criterion
- 3 S 5
- Three parameter method(?1,?2, a)
- Mode amplitude
- Evaluation function
- s(t)lt ?1 in (1- a)
- s(t)lt ?2 in a
- a ? 0.05, ?1 ?0.05,
- ?2 ? 10?1
1
2
3
26P2 End Effect Problem
- End effect of Hilbert Transform
1
27P2 Solutions for End Effects
- End effect of Hilbert Transform
- Adding characteristics waves
- End effect of EMD
- Extension with linear spline fittings near the
boundaries
6
28P3 Mode Mixing
- Ensemble EMD (EEMD)
- Post-processing of EEMD
1
29P3 Ensemble EMD (EEMD)
- Noise n1-nm are identical independent
distributed. - Ensemble EMD indeed enables the signals of
- similar scale collated together.
- The ensemble EMD results might not be IMFs.
-
8
7
30P3 Post-Processing of EEMD
- Post-processing EEMD can get real IMFs.
31P4 Speed of Computing
- The processing time of HHT is dependent on
complexity of the data and criterions of the
algorithm - HHT data processing system(HHT-DPS)
- Implementation of HHT based on DSP
13
32P5 Spline
5
33Conclusion
- The definition of an IMF guarantees a
well-behaved Hilbert transform of the IMF - IMF represents intrinsic signature of physics
behind the data - Although there are still many problems in HHT,HHT
has lots of applications in all aspects -
34Reference(1/3)
- 1 N. E. Huang, Z. Shen, etc. The empirical
mode deomposition and the Hilbert spectrum for
nonlinear and non-stationary time series
analysis, Proceedings of the Royal Society, vol.
454, no. 1971, pp. 903995, March 8 1998. - 2 N. E. Huang, M. C. Wu, S. R. Long, S. S. P.
Shen, W. Qu, P. Gloersen and K. L. Fan, A
Confidence Limit for the Empirical Mode
Decomposition and Hilbert Spectrum Analysis,
Proc. R. Soc. Lond. A, vol. 459, 2003, pp. 2317-
2345. - 3 G. Rilling, P. Flandrin and P. Gonçalvés, On
Empirical Mode Decomposition and Its Algorithms,
IEEE-EURASIP Work- shop on Nonlinear Signal and
Image Processing NSIP-03, Grado, Italy, 8-11 Jun.
2003. - 4 J. Cheng, D. Yu and Y. Yang, Research on the
Intrinsic Mode Function (IMF) Criterion in EMD
Method, Mechanical Systems and Signal
Processing, vol. 20, 2006, pp. 817-824. - 5 Z. Xu, B. Huang and S. Xu, Exact Location of
Extrema for Empirical Mode Decomposition,
Electronics Letters, vol. 44, no. 8, 10 Apr.
2008, pp. 551-552. - 6 ?????? ???????? (RCADA)
- Available http//rcada.ncu.edu.tw/intro
.html -
35Reference(2/3)
- 7 Z. WU and N. E. HUANG , ENSEMBLE EMPIRICAL
MODE DECOMPOSITIONA NOISE-ASSISTED DATA ANALYSIS
METHOD, Advances in Adaptive Data Analysis, Vol.
1, No. 1 pp 141,2009 - 8 Master thesis Applications of Ensemble
Empirical Mode Decomposition (EEMD) and
Auto-Regressive (AR) Model for Diagnosing
Looseness Faults of Rotating Machinery - 9 Y. Deng, W. Wang, C. Qian, Z. Wang and D.
Dai, Boundary-Processing- Technique in EMD
Method and Hilbert Transform, Chinese Science
Bulletin, vol. 46, no. 1, Jan. 2001, pp. 954-960. - 10 J. Zhao and D. Huang, Mirror Extending and
Circular Spline Function for Empirical Mode
Decomposition Method, Journal of Zhejiang
University, Science, vol. 2, no.3, July-Sep.
2001, pp. 247-252. - 11 K. Zeng and M. He, A simple Boundary
Process Technique for Empirical Mode
Decomposition, IEEE International Geoscience and
Remote Sensing Symposium IGARSS '04, vol. 6,
2004, pp. 4258-4261. - 12 Z. Zhao and Y. Wang, A New Method for
Processing End Effect in Empirical Mode
Decomposition, IEEE International Conference on
Circuits and Systems for Communications ICCSC
2007, 2007, pp. 841-845.
36Reference(3/3)
- 13 H. Li and Z. Li, etc. , Implementation of
Hilbert-Huang Transform (HHT) - Based on DSP, International
Conference on Signal Processing, vol.1, 2004 - 14 Z. Zhidong and W. Yang ,A New Method for
Processing End Effect In - Empirical Mode Decomposition,
International Conference on - Communications, Circuits and
Systems, ICCCAS , pp 841-845, July 2007
37Thank you