???????????? Using Social Recommendation in Academic Community - PowerPoint PPT Presentation

About This Presentation
Title:

???????????? Using Social Recommendation in Academic Community

Description:

Using Social Recommendation in Academic Community – PowerPoint PPT presentation

Number of Views:97
Avg rating:3.0/5.0
Slides: 66
Provided by: csNccuEd4
Category:

less

Transcript and Presenter's Notes

Title: ???????????? Using Social Recommendation in Academic Community


1
???????????? Using Social Recommendation in
Academic Community
  • ???????????????????
  • ???
  • ?????????????

2
??
  • ??
  • ????
  • ????
  • ?????????
  • ?????

3
??
4
???????
  • ????(Information Overload)
  • ????????????,???????????????
  • ??????????????,??????????????
  • ?????????,??????????????????
  • ??????????????????????

5
????
  • ????????????????????,????????,?????????
  • ??????????????????
  • ??????????,???????????,????????????????
  • ??????
  • ?????????????????,??????????,?????????????????????
    ??,???????
  • ????
  • ?????????,????????????,???????

6
????
7
??????
  • ??????(Social Network Analysis)???????????????????
    ???????????,????????????????????
  • ???????????,?????????????????40
  • ??????????,????????????,???????
  • ?????????,?????????????????

8
???????
http//en.wikipedia.org/wiki/Social_network
9
??????(Cont.)
  • ????????,?????????????????21
  • Degreenumber of direct connections
  • Betweennessrole of broker or gatekeeper
  • Closeness Centralitywho has the shortest path to
    all others

10
Clustering Algorithm
  • Partitioning methods
  • k-Means
  • Hierarchical methods
  • Agglomerative
  • Divisive
  • Model-based methods
  • Self-Organizing Map

11
Clustering Algorithm (?)
  • Partitioning methods
  • k-Means
  • Hierarchical methods
  • Agglomerative
  • Divisive
  • Model-based methods
  • Self-Organizing Map

12
Clustering Algorithm (?)
  • Partitioning methods
  • k-Means
  • Hierarchical methods
  • Agglomerative
  • Divisive
  • Model-based methods
  • Self-Organizing Map

13
????
  • ????????????????????????????,??????????????
  • ??????????????????
  • ????(Content-based)???
  • ????(Collaborative Filtering)???

14
??????????
  • The vector model ranks the documents according to
    their degree of similarity to the query, and
    retrieve the documents with a degree of
    similarity above a threshold
  • Define
  • Weight wi,j associated with a pair (ki, dj) is
    positive and non-binary
  • (t is the
    total number of index terms)
  • The index terms in the query are also weighted
  • wi,q is the weight associated with the pair ki,
    q, where wi,q gt 0
  • (t is the
    total number of index terms)
  • Degree of similarity of dj with regard to q The
    cosine of the angle between the two corresponding
    vectors

15
????????????
Normalized
Term-document matrix
16
????????????
17
????
18
???
  • ?????????????? 38?????????????
  • ????(Title)???(Abstract)????(Keyword)???(Author)??
    ??????
  • http//ir.lib.nctu.edu.tw
  • ??????

19
????
  • ????(Tokenization)????(Lowercasing)
  • ?????(Stopword Removing)
  • ????(Part-of-speech)
  • ???(Chunking)
  • ????(Stemming)
  • ????(Feature Selection)

20
????(?)
Some combinatorial characteristics of matrix
multiplication on regular two-dimensional arrays
are studied. From the studies, the authors are
able to design many efficient varieties of the
cylindrical array and the two-layered mesh array
for matrix multiplication.
some combinatorial characteristics of matrix
multiplication on regular two-dimensional arrays
are studied from the studies the authors are able
to design many efficient varieties of the
cylindrical array and the two-layered mesh array
for matrix multiplication
combinatorial characteristics matrix
multiplication regular two-dimensional arrays
studied studies authors design efficient
varieties cylindrical array two-layered mesh
array matrix multiplication
combinatorial_jj characteristics_nns matrix_nn
multiplication_nn regular_jj two-dimensional_jj
arrays_nns studied_vbn studies_nns authors_nns
design_vb efficient_jj varieties_nns
cylindrical_jj array_nn two-layered_jj mesh_nn
array_nn matrix_nn multiplication_nn
POS Phrase
noun noun noun verb noun noun verb noun noun noun noun combinatorial characteristics matrix multiplication regular two-dimensional arrays studied studies author design efficient varieties cylindrical array two-layered mesh array matrix multiplication
POS Phrase
noun noun noun verb noun noun verb noun noun noun noun combinatori characterist matrix multipl regular two-dimension arrai studi studi author design effici varieti cylindr arrai two-lay mesh arrai matrix multipl
some combinatorial characteristics of matrix
multiplication on regular two-dimensional arrays
are studied from the studies the authors are able
to design many efficient varieties of the
cylindrical array and the two-layered mesh array
for matrix multiplication
21
???????
  • ?????
  • ???????
  • ???????
  • ?????
  • ???????

22
?????
  • ??TF-IAF (Term Frequency-Inverse Author
    Frequency)30??????????????
  • ???TF-IAF?,????????????????

23
???????
  • ?????????,??????????????????????????
  • ??????(Title)????(Keyword)????????????????

24
???????
  • ?????????????,??????????????TF-IAF???,????????????
    ????
  • ?????????????,??????????????
  • ??9????????????

25
???????
26
??????????9
27
?????????
Finding vertices whose weights are larger than
the average weight
28
???????(Cont.)
  • k-Nearest Neighbor Approach19
  • ????????,????????k?????,?????????,?????????
  • ?????????
  • ????????????,?????????????????????????,?????????,?
    ?????????,????(3-6)???

(3-6)
29
?????
Use k-nearest neighbor graph approach
30
???????(Cont.)
  • ?????????
  • ?????(Inter-connectivity)???????????,???????????(R
    elative Inter-connectivity)??????????????????(3-7)
    ???

(3-7)
31
?????????
32
???????(Cont.)
  • ????????????
  • ?????????????????????
  • ????????????????,?????????????,?????
  • ??????????????,???????
  • ????????(3-8)??

(3-8)
33
????????????
34
???????
  • ??????????????
  • ?????????????????

35
??????
  • ???????
  • ?????

36
???????
37
???????(?)
38
?????
  • ???????????Nm???U??,N???????,m?????????
  • ???R??????????,???????????????U
    ,???????U?????????????(a????R?????)

39
?????(?)
  • ??????(Cosine Similarity)??????????????,??????????
    ????????,?????????

40
????
  • ?????????????????,????????9?????,???????????????
    ??,????????????????????,?????
  • ?????(Collaborative Filtering)
  • ????????,??????????,???????????????????????,??????
    ??n???????
  • ????(??????)
  • ??????????????????,??????????????,?????????????n??
    ?

41
?????????
42
????????
43
????????
44
????????(?)
45
????????(?)
46
????????(Cont.)
47
????????(?)
48
??????????
  • ????????????,????????????
  • ???????????????
  • ?????(Precision)????(Recall)????15,??????????

49
??????????(?)
Class label Cluster label
Network Communication Mobile Computing Routing Protocol PIM-SM Bandwidth Requests TCP Network Management
Artificial Intelligence Genetic Algorithm Network Motif Brick Motif Content Analysis Neural Network SPDNN Divide-and-conquer Learning
Computer Graphics Content-based Image Retrieval Watershed Segmentation Toboggan Approach
Information Retrieval Semantic Query Content Management
Computer System Memory Cache Parallel Algorithm
Information Security End-to-end Security
Graph Theory Interconnection Network
Software Engineering Reliability Analysis
50
??????????(?)
Class label of authors
Network Communication 111
Artificial Intelligence 28
Information Retrieval 7
Computer System 6
Computer Graphics 23
Information Security 10
Graph Theory 29
Software Engineering 4
Others 17
Total 235
51
??????????(?)
a value 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision 0.7071 0.6917 0.6981 0.7107 0.7172 0.7209 0.7209 0.7209 0.7209 0.7209 0.7209
Recall 0.6271 0.7606 0.7785 0.7839 0.7817 0.7828 0.7828 0.7828 0.7828 0.7828 0.7828
52
??????????
  • ????0.068,??????95?,?????(0.632, 0.897)
    Kappa??0.764,??????0.95
  • ???????????????,???208?,?????????????187?,????????
    187/2080.899

Expert A Expert A Expert A Expert A
No No Yes Yes Total Total
Expert B No 21 (9.6) 9 (4.1) 30 (13.7)
Expert B Yes 2 (0.9) 187 (85.4) 189 (86.3)
Total Total 23 (10.5) 196 (89.5) 219 219
53
??????????
  • ?????????1??41?,???1???????129?,??????55????5???
    ??93

54
??????????(?)
Name Publications
Yu-Chee Tseng (???) Jimmy J. M. Tan (???) Lih-Hsing Hsu (???) Yi-Bing Lin (???) Ying-Dar Lin (???) Ling-Hwei Chen (???) Chuen-Tsai Sun (???) Jang-Ping Sheu (???) Hsin-Chia Fu (???) Hao-Ren Ke (???) Wei-Pang Yang (???) Wen-Guey Tzeng (???) Chien-Chao Tseng (???) Tseng-Kuei Li (???) Wen-Chih Peng (???) Chang-Hsiung Tsai (???) Deng-Jyi Chen (???) Yuan-Cheng Lai (???) 41 36 33 32 26 17 14 13 11 10 8 8 7 7 6 6 6 6
55
??????
  • ???????1?6?????,??????????6?,???????3?????2?6???
    ??????220?,????97

56
????
57
??????????
Rank Degree Degree Betweenness Betweenness Closeness Closeness
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Yu-Chee Tseng Yi-Bing Lin Ying-Dar Lin Jimmy J. M. Tan Lih-Hsing Hsu Hsin-Chia Fu Jang-Ping Sheu Chien-Chao Tseng Chuen-Tsai Sun Hao-Ren Ke Ling-Hwei Chen Wei-Pang Yang Hsiao-Tien Pao Zen-Chung Shih Chang-Hsiung Tsai Jeu-Yih Jeng Yeong-Yuh Xu Deng-Jyi Chen Wen-Guey Tzeng Ming-Hour Yang 43 32 29 29 26 16 15 14 12 11 10 8 8 7 7 7 7 7 7 7 Yu-Chee Tseng Chien-Chao Tseng Yi-Bing Lin Ming-Feng Chang Ying-Dar Lin Wen-Chih Peng Jimmy J. M. Tan Lih-Hsing Hsu Chuen-Tsai Sun Hsin-Chia Fu Ling-Hwei Chen Jang-Ping Sheu Sunny S.J. Lin Hao-Ren Ke Chi-Fu Huang Wen-Guey Tzeng Shi-Chun Tsai Deng-Jyi Chen Zen-Chung Shih Wei-Pang Yang 2660.333 2180.500 2081.333 1792.000 376.500 340.000 213.167 133.167 91.000 86.000 44.000 38.333 36.000 32.833 22.500 21.333 15.333 12.000 12.000 8.833 Yu-Chee Tseng Chien-Chao Tseng Ming-Feng Chang Chi-Fu Huang Hsiao-Lu Wu Yuan-Ying Hsu Jung-Hsuan Fan Yi-Bing Lin Hang-Wen Hwang Jang-Ping Sheu Wen-Chih Peng Meng-Ta Hsu Lin-Yi Wu Ming-Hour Yang Chih-Yu Lin Sze-Yao Ni Wen-Hwa Liao Shih-Lin Wu Chih-Shun Hsu Chi-He Chang 0.678 0.678 0.678 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677 0.677
58
?????
59
??
  • ???????????????,??????????????????????????????,???
    ?????????????
  • ????????????,???????????
  • ????????235???,226????,???22?????
  • ????????????,??????????????????????,?????????????
    ?????
  • ?????????????0.899,?????????,?????????

60
????
  • ???????
  • ??????????,??????????????????????,????????
  • ????????????,?????????,????????
  • ?????????????????,????????????
  • ????????
  • ?????????????????????????????????????????????????
    ??????????????????
  • ?????????????????????,?????????????

61
????(?)
  • ?????????
  • ???????????????????,??????????????????
  • ????Floyd-Warshall???????????????,???????????,????
    ?????,???????????
  • ???????????????
  • ?????(??????)??????

62
????(?)
  1. A. Iskold, (2007) The Art, Science and Business
    of Recommendation Engines. http//www.readwritewe
    b.com/archives/recommendation_engines.php
  2. A. K. Jain, M. N. Murty, P. J. Flynn, Data
    clustering A review, ACM Computing Surveys,
    vol. 31, pp. 264-323, 1999.
  3. B. Krulwich, C. Burkey, The InfoFinder agent
    Learning user interests through heuristic phrase
    extraction, IEEE Expert Intelligent Systems and
    Their Applications, vol. 12, pp. 22-27, 1997.
  4. B. Sarwar, G. Karypis, J. Konstan, J. Riedl,
    Analysis of recommendation algorithms for
    e-commerce, Proceedings of the 2nd ACM
    conference on Electronic commerce, pp. 158-167,
    2000.
  5. D. Goldberg, D. Nichols, B. M. Oki, D. Terry,
    Using Collaborative Filtering to Weave An
    Information Tapestry, Communications of the ACM,
    vol. 35, pp. 61-70, 1992.
  6. D. Koller, M. Sahami, Hierarchically
    classifying documents using very few words,
    Proceedings of 14th the International Conference
    on Machine Learning, pp.170178, 1997.
  7. F. Sebastiani, Machine learning in automated
    text categorization, ACM Computing Surveys, vol.
    34, pp. 1-47, 2002.
  8. G.. Karypis, E. H. Han, V. Kumar, Chameleon
    Hierarchical clustering using dynamic modeling,
    Computer, vol. 32, pp. 68-75, 1999.
  9. H. C. Chang, C. C. Hsu, Using topic keyword
    clusters for automatic document clustering,
    Transactions on Information and Systems, vol. 88,
    pp. 1852-1860, 2005.
  10. H. Hotta , User profiling system using social
    networks for recommendation, In Proceedings of
    8th International Symposium on Advanced
    Intelligent Systems , 2007.
  11. H. Kautz, B. Selman, F. Park, Referral Web
    Combining social networks and collaborative
    filtering, Communications of the ACM, vol. 40 ,
    pp. 63-65, 1997.

63
????(?)
  1. H. Sakagami, T. Kamba, Learning Personal
    Preferences on Online Newspaper Articles from
    User Behaviors, Computer Networks and ISDN
    Systems, vol. 29, pp. 1447-1455, 1997.
  2. J. B. Schafer, J. Konstan, J. Riedi,
    Recommender systems in e-commerce, Proceedings
    of the 1st ACM conference on Electronic commerce,
    pp. 158-166, 1999.
  3. J. MacQueen, Some methods for classification and
    analysis of multivariate observations,
    Proceedings of 5th Berkeley Symposium on
    Mathematical Statistics and Probability, vol. 1,
    pp. 281-297, 1967.
  4. J. Makhoul, F. Kubala, R. Schwartz, R.
    Weischedel, Performance measures for information
    extraction, Proceedings of DARPA Broadcast News
    Workshop, pp. 249-252, 1999.
  5. J. Moreno, Who Shall Survive? New York National
    Institute of Mental Health, 1934.
  6. J. R. Tyler, D. M. Wilkinson, B. A. Huberman,
    Email as spectroscopy Automated discovery of
    community structure within organizations,
    Communities and technologies, pp. 81-96, 2003.
  7. J. Rucker, M. J. Polanco, Siteseer
    Personalized navigation for the web,
    Communications of the ACM, vol. 40, pp. 73-76,
    1997.
  8. K. C. Gowda, G. Krishna, Agglomerative
    clustering using the concept of mutual nearest
    neighbourhood, Pattern Recognition, vol. 10, pp.
    105-112, 1978.
  9. K. Faust, Comparison of methods for positional
    analysisStructural and general equivalences,
    Social Networks, vol. 10, pp.313-341, 1988.
  10. L. C. Freeman, Centrality in Social Networks
    Conceptual clarification, Social Networks, vol.
    1, pp. 215-239, 1979.
  11. L. Page, S. Brin, The anatomy of a large-scale
    hypertextual Web search engine, In Proceedings
    of the seventh international World-Wide Web
    conference, 1998.

64
????(?)
  1. L. Garton, C. Haythornthwaite, B. Wellman,
    (1997) Studying Online Social Networks,
    http//jcmc.huji.ac.il/vol3/issue1/garton.html
  2. M. A. Shah, ReferralWeb A resource location
    system guided by personal relations, Master's
    thesis, M.I.T., 1997.
  3. M. Granovetter, The strength of weak ties A
    network theory revisited, Sociology Theory, vol.
    1, pp. 201-233, 1983.
  4. N. Zhong, J. Liu Y. Yao, In search of the
    wisdom web, Computer, vol. 35, pp. 27-31, 2002.
  5. P. Athanasios, Probability, Random Variables and
    Stochastic Processes., Second Edition ed. New
    York McGraw-Hill, 1984.
  6. P. Mika, Flink Semantic Web technology for the
    extraction and analysis of social networks, Web
    Semantics Science, Services and Agents on the
    World Wide Web, vol 3, pp. 211-223, 2005.
  7. P. Pattison, Algebraic models for social
    networks., Cambridge University Press, 1993.
  8. S. E. Chan, R. K. Pon, A. F. Cárdenas,
    Visualization and Clustering of Author Social
    Networks, International Conference on
    Distributed Multimedia Systems Workshop on
    Visual Languages and Computing, pp. 30-31, 2006.
  9. S. P. Borgatti, (1998) What Is Social Network
    Analysis? http//www.analytictech.com/networks/wh
    atis.htm
  10. S. Staab, P. Domingos, P. Mike, J. Golbeck, D.
    Li, T. Finin, A. Joshi, A. Nowak, R. R.
    Vallacher, Social networks applied, IEEE
    Intelligent Systems, vol. 20, pp. 80-93, 2005.
  11. V. Kotlyar, M. S.Viveros, S. S. Duri, R. D.
    Lawrence, G. S. Almasi, A case study in
    information delivery to mass retail markets, In
    Proceedings of the 10th International Conference
    on Database and Expert Systems, 1999.

65
????(?)
  1. X. Liu, J. Bollen, M. L. Nelson, H. V. de
    Sompel, Co-authorship networks in the digital
    library research community, Information
    Processing and Management, vol 41, pp. 1462-1480
    , 2005.
  2. Y. Matsuo, J. Mori, M. Hamasaki, POLYPHONET
    An advanced social network extraction system from
    the Web ", Web Semantics Science, Services and
    Agents on the World Wide Web, vol. 5, pp.
    262-278, 2007.
  3. Kappa Statistics - http//www.dmi.columbia.edu/hom
    epages/chuangj/kappa
  4. LingPipe NLP Toolkit - http//alias-i.com/lingpipe
    /
  5. NCTUIR - http//ir.lib.nctu.edu.tw/
  6. Porter Stemming Algorithm - http//tartarus.org/m
    artin/PorterStemmer
  7. D. J. Watts?, ???, ????, 6?????? ????, 2004.
  8. ???, ?????????????? ???????????????, 2001.
  9. ???, ????????????????? ??????????????????,
    2006.
  10. ???, ???, ?????????????????? 2007???????????????
    , 423-434, 2007.
Write a Comment
User Comments (0)
About PowerShow.com