Fisica Adronica - PowerPoint PPT Presentation

About This Presentation
Title:

Fisica Adronica

Description:

Spettroscopia del Charmonio Charmonium Spectroscopy ... A comparison of the hc mass with the masses of the triplet P states measures ... To do so we need: High ... – PowerPoint PPT presentation

Number of Views:226
Avg rating:3.0/5.0
Slides: 69
Provided by: DiegoB3
Category:

less

Transcript and Presenter's Notes

Title: Fisica Adronica


1
Fisica Adronica
  • D. Bettoni, S. Malvezzi, R. Mussa,
  • F. Tessarotto, A. Zoccoli

Gruppo di Lavoro della CSN1 Roma 15/03/04
2
Argomenti da Trattare
  • Spettroscopia del charmonio
  • Spettroscopia quark leggeri
  • Ricerca di glueball, Ibridi, Multiquarks.
  • Charmonium hybrids
  • Charmonio nella materia
  • Fattori di forma del protone nella regione
    timelike
  • Deeply Virtual Compton Scattering
  • Drell-Yan, Transverse Quark Distributions
  • Produzione di fotoni ad alto pT
  • Mesoni e barioni charmati
  • Vite medie, Decadimenti, Violazione di CP,
    Dinamiche.

3
Organizzazione
  • Componenti del Gruppo
  • D. Bettoni, S.Malvezzi, R.Mussa, F.Tessarotto,
    A.Zoccoli
  • Riunioni periodiche
  • Milano 02/03/04
  • Telefonica 09/03/04
  • Scambio informazioni tramite pagina web
  • http//www.fe.infn.it/bettoni/wg/

4
Programma di Lavoro
  • Esplorare nel modo più ampio possibile le
    potenzialità di fisica del settore.
  • Per ciascuno degli argomenti
  • Fare il punto della situazione attuale
  • Analizzare la situazione tra 5-10 anni
    (esperimenti in corso o approvati)
  • Formulare i requisiti (acceleratore e rivelatore)
    di nuovi esperimenti.

5
Spettroscopia del Charmonio
6
Charmonium Spectroscopy
The charmonium system has often been called the
positronium of QCD. Non relativistic potential
models (with relativistic corrections) and PQCD
make it possible to calculate masses, widths and
branching ratios to be compared with
experiment. In ?pp annihilations states with
all quantum numbers can be formed directly the
resonace parameters are determined from the
beam parameters, and do not depend on energy and
momentum resolution of the detector.
7
The ?c (11S0)
  • Despite the recent measurements by E835 not much
    is
  • known about the ground state of charmonium
  • the error on the mass is still bigger than 1 Mev
  • recent measurements give larger widths than
  • previously expected
  • A large value of the ?c width is difficult to
    explain in
  • terms of simple quark models. Also unusually
    large
  • branching ratios into channels involving multiple
    kaons
  • and pions have been reported.
  • A precision measurements of the ?c mass, width
    and
  • branching ratios is of the utmost importance, and
    it can
  • only be done in by direct formation in ?pp.

8
The ?c(11S0)
M(?c) 2979.9 ? 1.0 MeV
?(?c) 25.5 ? 3.3 MeV
T. Skwarnicki Lepton Photon 2003
9
The ?c(21S0) discovery by BELLE
  • The Belle collaboration has recently
  • presented a 6? signal for B?KKSK?
  • which they interpret as evidence for
  • ??c production and decay via the
  • process
  • with
  • in disagreement with the Crystal Ball
  • result, but reasonably consistent with
  • potential model expectations.
  • (DPF 2002).

10
?? ? ?c(21S0)
M(??c) 3637.7 ? 4.4 MeV ?(??c) 19 ? 10 MeV
T. Skwarnicki Lepton Photon 2003
11
The hc(1P1)
  • Precise measurements of the parameters of the hc
    are of
  • extreme importance in resolving a number of open
    questions
  • Spin-dependent component of the q?q confinement
    potential. A comparison of the hc mass with the
    masses of the triplet P states measures the
    deviation of the vector part of the q?q
    interaction from pure one-gluon exchange.
  • Total width and partial width to ?c? will
    provide an estimate of the partial width to
    gluons.
  • Branching ratios for hadronic decays to lower c?c
    states.

12
Expected properties of the hc(1P1)
  • Quantum numbers JPC1-.
  • The mass is predicted to be within a few MeV of
    the center of gravity of the ?c(3P0,1,2) states
  • The width is expected to be small ?(hc) ? 1 MeV.
  • The dominant decay mode is expected to be ?c?,
    which should account for ? 50 of the total
    width.
  • It can also decay to J/?
  • J/? ?0
    violates isospin
  • J/? ??-
    suppressed by phase space

  • and angular momentum barrier

13
The hc(1P1) E760 observation
  • A signal in the hc region was seen
  • by E760 in the process
  • Due to the limited statistics E760
  • was only able to determine the mass
  • of this structure and to put an upper
  • limit on the width

14
The hc(1P1)
  • It is extremely important to identify this
    resonance and study its
  • properties. To do so we need
  • High statistics the signal will be very tiny
  • Excellent beam resolution the resonance is very
    narrow
  • The ability to detect its hadronic decay modes.
  • The search and study of the hc is a central part
    of the experimental
  • program of the PANDA experiment at GSI.

15
Charmonium States abovethe D?D threshold
  • The energy region above the D?D threshold at 3.73
    GeV is very poorly
  • known. Yet this region is rich in new physics.
  • The structures and the higher vector states
    (?(3S), ?(4S), ?(5S) ...) observed by the early
    ee- experiments have not all been confirmed by
    the latest, much more accurate measurements by
    BES. It is extremely important to confirm the
    existence of these states, which would be rich in
    D?D decays.
  • This is the region where the first radial
    excitations of the singlet and triplet P states
    are expected to exist.
  • It is in this region that the narrow D-states
    occur.

16
The X(3872)
New state discovered by Belle in B??K? (J/???-),
J/??µµ- or ee-
X(3872) seen also by CDF
M 3872.0 ? 0.6 ? 0.5 MeV ?? 2.3 MeV (90
C.L.)
M 3871.4 ? 0.7 ? 0.4 MeV
17
La rinascita dell'interesse nel charmonio in
questo decennio deve molto alle B-factories , che
consentono di produrre questi stati dai decays
del B, in gg, e con radiative return (ISR).
  • Charmonia produced/formed at dedicated
    facilities (all samples after 2000)
  • Asymmetric B-factories Babar Belle, with
    150 fb-1each
  • t-charm factory BES, with 58 M J/y and 14 M
    y(2s)
  • ,pp charmonium factory E835

Roberto Mussa ,Joint CLEO-c/BES Workshop,
Beijing, Jan.13-15, 2004
18
Charmonio Facilities dedicate corto/medio termine
CLEO-c 30 M y(3770) run 2004 1.5
M y(4140) run 2005 1G J/y run 2006
bonus 0.1-0.2 G y(2S) calibrazioni 2004-2006
BES-III (2007-2009?, con CsI Ecal) 10 G
J/y , 3 G y(2S) all'anno 25 M y(3770)
all'anno BaBar/Belle (da ora al 2006-7) 500
fb-1 ciascuna Panda_at_GSI (2011?- ) Luminosity
budget da definire
19
Fisica del charmonio questioni aperte in
spettroscopia e decadimenti
  • Determinazione JPC della X(3872) charmonio o
    tetraquark?
  • Studio delle caratteristiche della hc (2S),
    scoperta nel 2002
  • Hyperfine splitting dM a meglio di 1
    MeV
  • Larghezza totale e di annichilazione
  • Transizioni radiative a y e hc , e da
    y(2S).
  • Transizioni adroniche (p.es. hc
    (2S)?hc (1S)pp)
  • Hyperfine splitting stati P conferma hc di
    E760/E835 con altre tecniche
  • Ricerca di altri stati stretti nella regione
    delle soglie
  • Studio delle transizioni della y(3770) a
    charmonio
  • Misure di precisione sugli stati y e cc
  • Transizioni Radiative E1 al 1-2, M1
    al 5-10
  • Larghezze totali stati y e cc da
    10 a qualche .
  • Transizioni Adroniche Rare
  • Annichilazioni esclusive
    barione-antibarione, mesone-mesone
  • ( verifiche di spettroscopia
    quark leggeri)
  • Larghezze parziali in gg
    (finalmente a meglio del 5)

20
Fisica del charmonio questioni aperte in
produzione
Non e' tutto l'osservazione (Belle) di una
inaspettatamente alta sezione d'urto ee- ?
doppio ccbar pone questioni fondamentali di
QCD. Come negli anni 90 la discrepanza tra le
misure di produzione di charmonio prompt al
Tevatron ha consentito di compiere un sostanziale
salto nella comprensione teorica della QCD come
effective field theory (NRQCD), e' auspicabile
che lo studio della produzione di doppio ccbar
possa stimolare nuovi sviluppi teorici. Al
momento, le previsioni di NRQCD sulla produzione
di prompt charmonium al Tevatron sembrano in
parte contraddette dall'analisi della
polarizzazione i risultati del Run II (CDF/D0)
sono fortemente attesi. La soppressione della
produzione di stati del charmonio in urti di ioni
pesanti e' una delle firme caratteristiche attese
per lo studio del Quark Gluon Plasma. Dopo il
risultato di NA50, sono fortemente attesi
sviluppi da RHIC, NA49 nei prossimi anni.
21
A multifold approach the (Heavy) Quarkonium
Working Group
A joint experimental theoretical working group
to define priorities , unify language, develop
common analysis tools and maximize the amount of
information than can be extracted from the wealth
of new data.
Hera-B NA50,60 Phenix,Star Zeus, H1 CDF,D0
BES,CLEO-c E835 BaBar,Belle Aleph,L3 CDF,D0
Precision SM measurements
Production
Decays
Quarkonium at finite T
Spectroscopy
BESIII Panda LHCb,BTeV Atlas,CMS Alice
New Physics Opportunities
QWG1, CERN, November 2002 QWG2, FNAL, September
2003 QWG3, IHEP Beijing, October 2004
Visit our web site at www.qwg.to.infn.it
22
CHARMONIUM RADIATIVE TRANSITIONS
  • are the main road to access non vector states
    from ee- machines.
  • are an ideal arena to study relativistic
    corrections on charmonium wavefunctions
  • Should be ideal tools to measure both bc and
    mc
  • We have
  • The good old ones (84 parameters to
    measure)....

Roberto Mussa ,Joint CLEO-c/BES Workshop,
Beijing, Jan.13-15, 2004
23
CHARMONIUM RADIATIVE TRANSITIONS
  • are the main road to access non vector states
    from ee- machines.
  • are an ideal arena to study relativistic
    corrections on charmonium wavefunctions
  • Should be ideal tools to measure both bc and
    mc
  • We have
  • The good old ones (84 parameters to
    measure)....
  • ... and tough new ones (73 other parameters)

Roberto Mussa ,Joint CLEO-c/BES Workshop,
Beijing, Jan.13-15, 2004
24
Spettroscopia dei Quark Leggeri
25
Exotics Glueballs
  • QCD suggests the existence of non states
    like
  • Glueballs (gg,ggg) mesons made of bound
    gluons.
  • Hybrids ( ) qqbar pairs with an excited
    gluon.
  • Multiquark states ( , ,
    ) and/or meson molecules.

Many new states foreseen ? New multiplets
! Possible mixing with the standard mesons
(especially for glueballs). Mass range (from
lattice QCD predictions) gt 1.5 GeV
26
Exotic Signatures
  • Possible signatures for the exotics states
  • Exotics quantum numbers
  • ? JPC 0-, 1-, 2-, etc
  • ? B1 and S1 (no standard baryons or mesons)
  • No place in the standard meson nonets
  • Decay width not compatible with QCD predictions
    for standard states
  • Enhanced production in gluon rich environments
    (for glueballs)
  • Central production
  • p?p annihilation
  • J/? radiative decays
  • ?? suppressed production (for glueballs)

27
Experimental strategy
  • For example for Glueball search one exploits the
    preferred production reactions like
  • Central production (DPE) Results WA102, Gams
  • Future GTeV (?) , HERAg (No)
  • p?p annihilation
  • Results Obelix, Crystal Barrel,BNL
  • Future PANDA
  • J/? radiative decays
  • Results DM2, Mark
  • Future BES (?)
  • ?? suppressed production
  • Results LEP experiments

28
For the quantum numbers and the decay width
determination coupled channel and spin-parity
analyses are mandatory !
LH
NP
LP
pp???-?0
1.500.000 Ev.
pp?KK-?0
68.000 Ev.
pp?KK0?
41.000 Ev.
29
Glueballs
  • Lightest states predicted by Lattice QCD JPC
    0,2,0-
  • Mass (G.B. West 1997) m(0) lt m(2) lt m(0-)
  • -Mixing with the scalar nonet!
  • Best candidate for the 0 glueball f0(1500).

E692 pp ? pp(KsKs)
OBELIX (pp)1S0 ? pp-p0
M2(??-)
30
Hybrids
Light states predicted with Mass 2GeV. Best
candidates
E852 p-p ? hp-p
OBELIX p?p ? K K0p p p-
Exotic number JPC 1- M 1370 MeV Seen also
by Crystal Barrel in the pn ? p-p0h reaction.
?(1490) JPC 0-
Problem the masses of the candidates are too low
!
31
Multiquark states
The anti-decuplet proposed by Diakonov, Petrov
Polyakov (Z.Phys.A359 (1997) 305) with the three
exotic baryons at the corners - requiring the
indicated five valence quarks - and their decay
modes. Masses 1530 MeV and 2070 MeV
T(1530) ? nK or pK0
uudds
events
ddssu
uussd
?-- ? ?-p- or ?-K-
? ? ?0p or ?K0
invariant mass GeV/c2
Many evidence, but small significance. Not yet
clear !
32
Molti candidati e molto lavoro da fare per
chiarire la situazione !
n2
multipletti qq candidati chirali candidatistati
gluonici candidati ibridi candidati 4 quark
n1
33
Charmonium Hybrids
34
Charmonium Hybrids
  • Fluxtube-Modell predicts DD decays
  • if mHlt4,29 GeV
  • GHlt50 MeV
  • Some exotics can decay neither to D?D nor to
    D?D
  • e.g. JPC(H)0-
  • fluxtube allowedJ/yf2, J/y(pp)S,h1ch
  • fluxtube forbiddencc0w,cc0f,cc2w,cc2f,hch1
  • Small number of final states with small
    phasespace

CLEO
35
Charmonium Hybrids
  • Gluon rich process creates gluonic excitation in
    a direct way
  • ccbar requires the quarks to annihilate (no
    rearrangement)
  • yield comparable tocharmonium production
  • 2 complementary techniques
  • Production(Fixed-Momentum)
  • Formation(Broad- and Fine-Scans)
  • Momentum range for a survey
  • p 15 GeV

36
Fattori di Forma del Protone nella Regione
Timelike
37
Proton Timelike Form Factors
  • The electromagnetic form factors of the proton in
    the time-like region
  • can be extracted from the cross section for the
    process
  • ?pp
    ? ee-
  • First order QED predicts
  • Data at high Q2 are crucial to test the QCD
    predictions for the
  • asymptotic behavior of the form factors and the
    spacelike-timelike
  • equality at corresponding values of Q2.

38
  • Predictions of nucleon form factors are
    applicable up to high Q2 in both the
  • spacelike and timelike regions.
  • Perturbative QCD and analyticity relate timelike
    and spacelike form factors, predicting a
    continuous transition and spacelike-timelike
    equality at high Q2.
  • At high Q2 PQCD predicts
  • F1 and F2 are the Dirac and Pauli form
    factors respectively.
  • PQCD and analyticity predict
  • There are several unexpected features in the
    existing data which deserve further
  • experimental investigation
  • Threshold Q2 dependence.
  • High Q2 predictions.
  • Resonant structures.

39
Threshold Q2 Dependence
Steep behaviour near threshold observed by PS 170
at LEAR
40
High-Q2 predictions
The dashed line is the PQCD fit. The dot-dashed
line represents the dipole behaviour of the form
factor in the spacelike region for the
same values of Q2. The expected Q2 behaviour
is reached quite early, however there is a factor
of two between timelike and spacelike data
measured at the same Q2.
41
Resonant Structures
The dip in the total multihadronic cross section
and the steep variation of the proton form
factor near threshold may be fitted with a narrow
vector meson resonance, with a mass M ? 1.87 GeV
and a width ? ? 10-20 MeV, consistent with an N?N
bound state.
These considerations strongly support the
importance of a new measurement of the neutron
proton timelike form factors with much higher
statistics than previous work and with the
capability of separately determining the electric
and magnetic form factors.
42
Measurement of the Form Factor
  • E835 statistics not sufficient to measure the
    angular distribution (and
  • thus determine GE and GM separately. Calculate GM
    under two
  • hypotheses
  • (a) GE GM
  • (b) GE contribution negligible

43
E835 Form Factor Measurement
  • The dashed line is the PQCD fit

s (GeV2) 102?GM (a) 102? GM (b)
11.63
12.43
44
Future Measurements of the Proton Timelike Form
Factors
  • Measurements at ee- machines (to be checked)
  • BaBar
  • Belle
  • CLEO-III/CLEO-C
  • BES
  • Daphne
  • VEPP
  • Measurements at p?p machines
  • PANDA

45
Mesoni e Barioni Charmati
46
Charm ...the issues
  • Lifetime
  • Rare decays
  • Mixing
  • Semileptonic sector
  • Hadronic decays (Dalitz plot)
  • Leptonic decays
  • Multi-body channels (4,5,6 bodies!)
  • Charm Baryons
  • D spectroscopy

47
Beyond the Standard Modelthe clue from charm
...
  • Precision study of b and c decays
  • deviations in expected behaviour of
  • b and c quarks evidence for new physics
  • will elucidate new physics if found
    elsewhere
  • Rare decays
  • Mixing CPV

48
  • To use the full power of b and c decays,
    theoretical calculations of strong interactions
    must be used.
  • The lattice gauge approach promises precision
    calculations that must be confronted with data
  • Precision measurements of the D and Ds decay
    constants
  • Semileptonic charm decay measurements Vcd
    and Vcs directly as well as input on hadronic
    matrix element

49
Direct signatures for new physics in charm
decays
Bigi-Sanda hep-ph/9909479 A priori it is quite
conceivable that qualitatively different
forces drive the decays of up-type and down-type
quarks . More specifically, non-Standard-Model
forces might exhibit a very different pattern for
the two classes of quarks.
Charm decays are the only up-type quarks that
allow to probe this physicsnon-strange light
flavour hadrons do not allow for oscillations and
top-flavoured hadrons do not even form in a
practical way
50
Mixing CPV
Motivation suppressed in the charm sector in
the SM. If measured, would suggest SM
extension
BaBar measurement is _at_ 57.1 fb-1
51
  • New limits expected by BaBar and Belle
  • Cleo-c
    _at_ 95 C.L.
  • CP violation
  • Direct CP violation in D0 and D
  • Indirect CP violation in D0 decays
  • CP violation measurements exploiting the quantum
    coherence of the D0 ?D0 produced pair
  • y(3770) ? DD JP1-
  • CP violation asymmetry sensitivity
  • ACPlt0.01 _at_ Cleo-c and Beauty Factories

52
Rare decays
Motivation lepton number violation
study investigation of long range effects and SM
extension
FOCUS improved results by a factor of 1.7 14
approaching theoretical predictions for some of
the modes but still far for the majority
CDF Br(D0?mm-)lt2.4 ?10-6 _at_ 90 C.L. is the best
limit for this mode (65 pb-1 data)
CDF and D0 can trigger on dimuons ?promising
Cleo-c sensitivity 10-6
53
Leptonic decays
Motivations decay constants measurements
Lattice predicts fB/fD fBs/fDs with small errors
54
Hadronic and semileptonic decays
  • Over constrain the Unitarity Triangle
  • Inconsistencies New Physics

semileptonic decays are the easiest way to
determine CKM elementsQCD effects contained in
form factors. Comparison with LGT and quark
model calculations!
55
Status of CKM Matrix
Current VCKM From direct Measurements -no
unitarity imposed
CLEO-c will redefine 2nd generation elements And
enable improvements in 3rd generation
56
Potential Impact on VCKM
Current VCKM From direct Measurements -no
unitarity imposed
CLEO-c will redefine 2nd generation elements And
enable improvements in 3rd generation
57
Summary of reach
58
The GSI future project
59
Research activities at the future GSI facility
  • Structure and dynamics of nuclei Radioactive
    beams
  • Nuclear matter, nuclear astrophysics, fundamental
    symmetries
  • Nuclear Matter and QGP Relativistic HI Beams
  • Nuclear phase diagram,compressed nuclear/strange
    matter, deconfinement and chiral symmetry
  • Hadron structure and quark gluon dynamics
    Antiprotons
  • Non perturbative QCD, quark-gluon degrees of
    freedom, confinement and chiral symmetry,
    hypernuclear physics
  • Physics of dense plasmas and bulk matter Bunch
    Compression
  • Properties of high-density plasmas, phase
    transitions and equation of state, Laser-ion
    interactions with and in plasmas.

60
Antiproton Physics Program
  • Charmonium Spectroscopy. Precision measurement of
    masses, widths and branching ratios of all (c?c)
    states (hydrogen atom of QCD).
  • Search for gluonic excitations (hybrids,
    glueballs) in the charmonium mass range (3-5
    GeV/c2).
  • Search for modifications of meson properties in
    the nuclear medium, and their possible relation
    to the partial restoration of chiral symmetry for
    light quarks.
  • Precision ?-ray spectroscopy of single and double
    hypernuclei, to extract information on their
    structure and on the hyperon-nucleon and
    hyperon-hyperon interaction.

61
The GSI p Facility
  • HESR High Energy Storage Ring
  • Production rate 2x107/sec
  • Pbeam 1 - 15 GeV/c
  • Nstored 5x1010 p
  • High luminosity mode
  • Luminosity 2x1032 cm-2s-1
  • dp/p10-4 (stochastic cooling)
  • High resolution mode
  • dp/p10-5 (el. cooling lt 8 GeV/c)
  • Luminosity 1031 cm-2s-1

62
QCD Systems to be studied in Panda
63
The detector
  • Detector Requirements
  • (Nearly) 4? solid angle coverage (partial wave
    analysis)
  • High-rate capability (2107 annihilations/s)
  • Good PID (?, e, µ, ?, K, p)
  • Momentum resolution (? 1 )
  • Vertex reconstruction for D, K0s, ?
  • Efficient trigger
  • Modular design
  • For Charmonium
  • Pointlike interaction region
  • Lepton identification
  • Excellent calorimetry
  • Energy resolution
  • sensitivity to low-energy photons

64
Panda Detector Concept
forward spectrometer
target spectrometer
straw tubetracker
mini driftchambers
muon counter
DIRC
iron yoke
Solenoidal magnet
micro vertexdetector
electromagneticcalorimeter
65
(No Transcript)
66
Cost - Schedules
  • Civil Construction 225 M
  • Accelerator Components 265 M
  • Detectors 185 M
    (Panda 31 M)
  • TOTAL 675 M
  • HESR and 4 MeV e-cooling end 2009
  • SIS200 and 8 MeV e-cooling end 2011
  • Panda data taking 2011
  • Activities in 2004
  • Letter of Intent due end 2003
  • Refine physics. Prepare physics book.
  • GSI physics workshop. GSI 13-17 Oct 2003
  • Frascati Workshop March 2004
  • Finalize detector design.
  • Prepare TDR.

67
PANDA Collaboration
  • At present a group of 150 physicists
  • from 40 institutions of 9 Countries.

Austria - Germany Italy Netherlands Poland
Russia Sweden U.K. U.S.
Bochum, Bonn, Brescia, Catania, Cracow, Dresden,
Dubna I II, Edinburg, Erlangen, Ferrara,
Frascati, Franhfurt, Genova, Giessen, Glasgow,
KVI Groningen, GSI, FZ Jülich I II, Los Alamos,
Mainz, Milano, TU München, Münster, Northwestern,
BINP Novosibirsk, Pavia, Silesia, Stockolm,
Torino I II, Torino Politecnico,Trieste, TSL
Uppsala, Tübingen, Uppsala, SINS Warsaw, AAS Wien
Spokesperson Ulrich Wiedner - Uppsala
http//www.gsi.de/hesr/panda
68
Attività dei Gruppi Italiani
  • Ferrara (gruppo ex E835, attualmente in BaBar)
  • Partecipazione a Panda fisica del charmonio,
    tracciamento
  • Attività prevista nel 2004 (0.2 FTE)
    partecipazione a gruppi di studio e riunioni di
    collaborazione collaborazione nella scrittura
    del physics book (D.Bettoni editore della parte
    sul charmonio) collaborazione scrittura TDR
    simulazione charmonio.
  • Torino (gruppo Compass)
  • Partecipazione a Panda rivelatore per µ (tipo
    RICHWall), DVCS, D-Y.
  • Attività prevista nel 2004 (1 FTE 1 dott.)
    partecipazione a gruppi di studio e riunioni di
    collaborazione collaborazione nella scrittura
    del physics book e TDR simulazione reazioni
    Drell-Yan.
  • Trieste (gruppo Compass)
  • Partecipazione a Panda RICH.
  • Attività prevista nel 2004 (0.2 FTE)
    partecipazione a gruppi di studio e riunioni di
    collaborazione
Write a Comment
User Comments (0)
About PowerShow.com