Translation, Rotation, and Transformation - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

Translation, Rotation, and Transformation

Description:

Translation, Rotation, and Transformation Translations (Simple, Linear, Commutative) Rotations Differ from Translations Rotations are non-Euclidean like travelling on ... – PowerPoint PPT presentation

Number of Views:176
Avg rating:3.0/5.0
Slides: 20
Provided by: engineeri89
Category:

less

Transcript and Presenter's Notes

Title: Translation, Rotation, and Transformation


1
Translation, Rotation, and Transformation
2
Translations(Simple, Linear, Commutative)
X Y Z
1 0 0 Dx
0 1 0 Dy
0 0 1 Dz
0 0 0 1
Dy
Dx
3
Rotations Differ from Translations
  • Rotations are non-Euclidean
  • like travelling on a globe vs. a grid
  • Rotations are not commutative
  • x-rotate, y-rotate is not equal y-rotate,
    x-rotate etc.
  • Rotations are non-linear

4
Basic Rotation about Z-axis
5
Rotation Parameterization
  • Represent rotation space in Euclidean R3
  • e.g. Euler angles
  • Pros
  • three parameters for three DOFs
  • Cons
  • singularities, potentially poor interpolation

6
Euler angles (f,?,?)
  • An Euler angle is a rotation about a single
    Cartesian axis
  • Create multi-DOF rotations by concatenating
    Eulers
  • R R? R? Rf
  • 3 DOFs can be obtained by concatenating

7
X-Convention
  • Most commonly used
  • The rotation given by Euler angles (f,?,?), where
    the first rotation is by an angle f about the
    z-axis, the second is by an angle ? about the
    x-axis, and the third is by an angle ? about the
    z-axis (again).
  • R R? R? Rf

8
Yaw-Pitch-Roll Convention
9
Singularities
  • More than one sets of parameters can create the
    same rotation matrix.
  • Gimbal lock - two or more axes align, results in
    loss of rotational DOFs
  • For Yaw-Pitch-Roll Convention

10
Rotation Axis Angle
  • Eulers Rotation Theorem
  • all rotations can be expressed as axis/angle

11
Rotation Matrix
V (1-Cosq) C Cosq S Sinq
For given axis U(unit length) u1, u2, u3T and
rotation angle q
u1u 2 V u3 S
u12 V C
u1u3 V u 2S
R
u 2u1 V u3 S
u 2u3 V u1 S
u 22 V C
u32 V C
u3u1 V u2 S
u3u 2 V u1 S
12
Solution of Axis and Angle
Sinq ½(R32-R23)2(R13-R31)2(R21-R12)2(1/2)
Cosq (TraceR-1) / 2
q Atan2(Sinq, Cosq) -p lt q lt p
y
u1 (R32-R23) / (2 Sinq)
All
Sine
u2 (R13-R31) / (2 Sinq)
x
Cosine
Tan
u3 (R21-R12) / (2 Sinq)
13
TransformationAP ATB BP
B
BP
A
AP
14
Example
0 1 0 0
1 0 0 5
0 0 -1 0
0 0 0 1
ATB
zA
5
xB
yA
yB
xA
zB
15
Cube of Sides 2
0 -1 0 2
-S45 0 S45 2
-C45 0 -C45 2
0 0 0 1
ATB
yB
xB
yA
xA
16
Multiple Transformations
AP ATB BTC CTDDP
Also DTA (ATD)T
17
EOMs
  • Newton SFma, SMIa

I
L
SMIa - m g L Sinq I a m g L Sinq I a
0
q
mg
18
EOMs
  • Lagrangian L K P (kinetic and potential
    energy)

L
q
mg
19
EOMs
Write a Comment
User Comments (0)
About PowerShow.com