Title: Translation, Rotation, and Transformation
1Translation, Rotation, and Transformation
2Translations(Simple, Linear, Commutative)
X Y Z
1 0 0 Dx
0 1 0 Dy
0 0 1 Dz
0 0 0 1
Dy
Dx
3Rotations Differ from Translations
- Rotations are non-Euclidean
- like travelling on a globe vs. a grid
- Rotations are not commutative
- x-rotate, y-rotate is not equal y-rotate,
x-rotate etc. - Rotations are non-linear
4Basic Rotation about Z-axis
5Rotation Parameterization
- Represent rotation space in Euclidean R3
- e.g. Euler angles
- Pros
- three parameters for three DOFs
- Cons
- singularities, potentially poor interpolation
6Euler angles (f,?,?)
- An Euler angle is a rotation about a single
Cartesian axis - Create multi-DOF rotations by concatenating
Eulers - R R? R? Rf
- 3 DOFs can be obtained by concatenating
7X-Convention
- Most commonly used
- The rotation given by Euler angles (f,?,?), where
the first rotation is by an angle f about the
z-axis, the second is by an angle ? about the
x-axis, and the third is by an angle ? about the
z-axis (again). - R R? R? Rf
8Yaw-Pitch-Roll Convention
9Singularities
- More than one sets of parameters can create the
same rotation matrix. - Gimbal lock - two or more axes align, results in
loss of rotational DOFs - For Yaw-Pitch-Roll Convention
10Rotation Axis Angle
- Eulers Rotation Theorem
- all rotations can be expressed as axis/angle
11Rotation Matrix
V (1-Cosq) C Cosq S Sinq
For given axis U(unit length) u1, u2, u3T and
rotation angle q
u1u 2 V u3 S
u12 V C
u1u3 V u 2S
R
u 2u1 V u3 S
u 2u3 V u1 S
u 22 V C
u32 V C
u3u1 V u2 S
u3u 2 V u1 S
12Solution of Axis and Angle
Sinq ½(R32-R23)2(R13-R31)2(R21-R12)2(1/2)
Cosq (TraceR-1) / 2
q Atan2(Sinq, Cosq) -p lt q lt p
y
u1 (R32-R23) / (2 Sinq)
All
Sine
u2 (R13-R31) / (2 Sinq)
x
Cosine
Tan
u3 (R21-R12) / (2 Sinq)
13TransformationAP ATB BP
B
BP
A
AP
14Example
0 1 0 0
1 0 0 5
0 0 -1 0
0 0 0 1
ATB
zA
5
xB
yA
yB
xA
zB
15Cube of Sides 2
0 -1 0 2
-S45 0 S45 2
-C45 0 -C45 2
0 0 0 1
ATB
yB
xB
yA
xA
16Multiple Transformations
AP ATB BTC CTDDP
Also DTA (ATD)T
17EOMs
I
L
SMIa - m g L Sinq I a m g L Sinq I a
0
q
mg
18EOMs
- Lagrangian L K P (kinetic and potential
energy)
L
q
mg
19EOMs