Haemodynamic Monitoring - PowerPoint PPT Presentation

1 / 51
About This Presentation
Title:

Haemodynamic Monitoring

Description:

Haemodynamic Monitoring Theory and Practice Inclusion of lung water in the therapeutic strategy has a great influence on the patient s outcome. – PowerPoint PPT presentation

Number of Views:134
Avg rating:3.0/5.0
Slides: 52
Provided by: mtg8
Category:

less

Transcript and Presenter's Notes

Title: Haemodynamic Monitoring


1
Haemodynamic Monitoring
Theory and Practice
2
Haemodynamic Monitoring
  1. Physiological Background
  2. Monitoring
  3. Optimising the Cardiac Output
  4. Measuring Preload
  5. Introduction to PiCCO Technology
  6. Practical Approach
  7. Fields of Application
  8. Limitations

3
Haemodynamic Monitoring
E. Introduction to PiCCO Technology
  1. Principles of function
  2. Thermodilution
  3. Pulse contour analysis
  4. Contractility parameters
  5. Afterload parameters
  6. Extravascular lung water
  7. Pulmonary permeability

4
Introduction to the PiCCO-Technology
Parameters for guiding volume therapy
Contractility
Volumetric preload
  • static
  • - dynamic

Differentiated Volume Management
CO
EVLW
PiCCO Technology
5
Introduction to the PiCCO-Technology Function
Principles of Measurement
PiCCO Technology is a combination of
transpulmonary thermodilution and pulse contour
analysis
CVC
Lungs
Pulmonary Circulation
central venous bolus injection
PULSIOCATH arterial thermodilution catheter
Left Heart
Right Heart
PULSIOCATH
PULSIOCATH
Body Circulation
6
Introduction to the PiCCO-Technology Function
Principles of Measurement
After central venous injection the cold bolus
sequentially passes through the various
intrathoracic compartments
Bolus injection
concentration changes over time (Thermodilution
curve)
Lungs
Left heart
Right heart
The temperature change over time is registered by
a sensor at the tip of the arterial catheter
7
Introduction to the PiCCO-Technology Function
Intrathoracic Compartments (mixing chambers)
Intrathoracic Thermal Volume (ITTV)
Pulmonary Thermal Volume (PTV)
Largest single mixing chamber
Total of mixing chambers
8
Haemodynamic Monitoring
E. Introduction to PiCCO Technology
  1. Principles of function
  2. Thermodilution
  3. Pulse contour analysis
  4. Contractility parameters
  5. Afterload parameters
  6. Extravascular Lung Water
  7. Pulmonary Permeability

9
Introduction to the PiCCO-Technology
Thermodilution
Calculation of the Cardiac Output
The CO is calculated by analysis of the
thermodilution curve using the modified
Stewart-Hamilton algorithm
Tb
Injection
t
(Tb - Ti) x Vi x K
COTD a

Tb x dt
D
?
Tb Blood temperature Ti Injectate
temperature Vi Injectate volume ? ? Tb . dt
Area under the thermodilution curve K
Correction constant, made up of specific weight
and specific heat of blood and injectate
10
Introduction to the PiCCO-Technology
Thermodilution
Thermodilution curves
The area under the thermodilution curve is
inversely proportional to the CO.
Temperature
36,5
Normal CO 5.5l/min

37
Temperature
Time
36,5
low CO 1.9l/min
37
Temperature
Time
36,5
High CO 19l/min
37
10
5
Time
11
Introduction to the PiCCO Technology
Thermodilution
Transpulmonary vs. Pulmonary Artery Thermodilution
Transpulmonary TD (PiCCO)
Pulmonary Artery TD (PAC)
Aorta
PA
Pulmonary Circulation
Lungs
LA
central venous bolus injection
RA
LV
RV
PULSIOCATH arterial thermo-dilution catheter
Right Heart
Left heart
Body Circulation
In both procedures only part of the injected
indicator passes the thermistor. Nonetheless the
determination of CO is correct, as it is not the
amount of the detected indicator but the
difference in temperature over time that is
relevant!
12
Introduction to the PiCCO Technology
Thermodilution
Validation of the Transpulmonary Thermodilution
n (Pts / Measurements)
r
Comparison with Pulmonary Artery Thermodilution
bias SD(l/min)
0,95
-0,04 0,41
17/102
Friedman Z et al., Eur J Anaest, 2002
0,93
0,13 0,52
60/180
Della Rocca G et al., Eur J Anaest 14, 2002
0.98
0,32 0,29
23/218
Holm C et al., Burns 27, 2001
0,95
0,49 0,45
45/283
Bindels AJGH et al., Crit Care 4, 2000
0,97
0,68 0,62
37/449
Sakka SG et al., Intensive Care Med 25, 1999
0,96
0,16 0,31
30/150
Gödje O et al., Chest 113 (4), 1998
- / -
0,19 0,21
9/27
McLuckie A. et a., Acta Paediatr 85, 1996
Comparison with the Fick Method
0,98
0,03 0,17
18/54
Pauli C. et al., Intensive Care Med 28, 2002
24/120
0,99
0,03 0,24
Tibby S. et al., Intensive Care Med 23, 1997
13
Introduction to the PiCCO-Technology
Thermodilution
Extended analysis of the thermodilution curve
From the characteristics of the thermodilution
curve it is possible to determine certain time
parameters
Tb
Injection
Recirculation
In Tb
e-1
MTt
DSt
t
MTt Mean Transit time the mean time required
for the indicator to reach the detection point
DSt Down Slope time the exponential downslope
time of the thermodilution curve
Tb blood temperature lnTb logarithmic blood
temperature t time
14
Introduction to the PiCCO-Technology
Thermodilution
Calculation of ITTV and PTV
By using the time parameters from the
thermodilution curve and the CO ITTV and PTV can
be calculated
Tb
Injection
Recirculation
In Tb
e-1
MTt
DSt
t
Pulmonary Thermal Volume PTV Dst x CO
Intrathoracic Thermal Volume ITTV MTt x CO
15
Einführung in die PiCCO-Technologie
Thermodilution
Calculation of ITTV and PTV
Intrathoracic Thermal Volume (ITTV)
Pulmonary Thermal Volume (PTV)
PTV Dst x CO
ITTV MTt x CO
16
Introduction to the PiCCO Technology
Thermodilution
Volumetric preload parameters GEDV
Global End-diastolic Volume (GEDV)
ITTV
PTV
GEDV
GEDV is the difference between intrathoracic and
pulmonary thermal volumes
17
Introduction to the PiCCO Technology
Thermodilution
Volumetric preload parameters ITBV
Intrathoracic Blood Volume (ITBV)
GEDV
PBV
ITBV
ITBV is the total of the Global End-Diastolic
Volume and the blood volume in the pulmonary
vessels (PBV)
18
Introduction to the PiCCO-Technology
Thermodilution
Volumetric preload parameters ITBV
ITBV is calculated from the GEDV by the PiCCO
Technology
Intrathoracic Blood Volume (ITBV)
ITBVTD (ml)
ITBV 1.25 GEDV 28.4 ml
GEDV (ml)
GEDV vs. ITBV in 57 Intensive Care Patients
Sakka et al, Intensive Care Med 26 180-187, 2000
19
Introduction to the PiCCO-Technology
Summary and Key Points - Thermodilution
  • PiCCO Technology is a less invasive method for
    monitoring the volume status and
    cardiovascular function.
  • Transpulmonary thermodilution allows
    calculation of various volumetric parameters.
  • The CO is calculated from the shape of the
    thermodilution curve.
  • The volumetric parameters of cardiac preload
    can be calculated through advanced analysis of
    the thermodilution curve.
  • For the thermodilution measurement only a
    fraction of the total injected indicator needs
    to pass the detection site, as it is only the
    change in temperature over time that is relevant.

20
Haemodynamic Monitoring
E. Introduction to PiCCO Technology
  1. Principles of function
  2. Thermodilution
  3. Pulse contour analysis
  4. Contractility parameters
  5. Afterload parameters
  6. Extravascular Lung Water
  7. Pulmonary Permeability

21
Introduction to the PiCCO-Technology Pulse
contour analysis
Calibration of the Pulse Contour Analysis
The pulse contour analysis is calibrated through
the transpulmonary thermodilution and is a beat
to beat real time analysis of the arterial
pressure curve
Transpulmonary Thermodilution
Pulse Contour Analysis
Injection
COTPD
SVTD
HR
T blood temperature t time P blood pressure
22
Introduction to the PiCCO-Technology Pulse
contour analysis
Parameters of Pulse Contour Analysis
Cardiac Output
P(t)
dP
(
PCCO cal HR
C(p)
)
dt
SVR
dt
Systole
Heart rate
23
Introduction to the PiCCO-Technology Pulse
contour analysis
Validation of Pulse Contour Analysis
Comparison with pulmonary artery thermodilution
r
n (Pts
/ Measurements)
bias SD (l/min)
22 / 96
- / -
-0,40 1,3
Mielck et al., J Cardiothorac Vasc Anesth 17 (2),
2003
25 / 380
- / -
0,14 0,58
Rauch H et al., Acta Anaesth Scand 46, 2002
20 / 360
0,93
-0,14 0,33
Felbinger TW et al., J Clin Anesth 46, 2002
62 / 186
0,94
-0,02 0,74
Della Rocca G et al., Br J Anaesth 88 (3), 2002
24 / 517
0,88
-0,2 1,15
Gödje O et al., Crit Care Med 30 (1), 2002
19 / 76
0,88
0,31 1,25
Zöllner C et al., J Cardiothorac Vasc Anesth 14
(2), 2000
0,94
0,03 0,63
12 / 36
Buhre W et al., J Cardiothorac Vasc Anesth 13
(4), 1999
24
Introduction to the PiCCO-Technology Pulse
Contour Analysis
Parameters of Pulse Contour Analysis
Dynamic parameters of volume responsiveness
Stroke Volume Variation
SVmax SVmin
SVV
SVmean
The Stroke Volume Variation is the variation in
stroke volume over the ventilatory cycle,
measured over the previous 30 second period.
25
Introduction to the PiCCO-Technology Pulse
Contour Analysis
Parameters of Pulse Contour Analysis
Dynamic parameters of volume responsiveness
Pulse Pressure Variation
PPmax
PPmin
PPmean
PPmax PPmin
PPV
PPmean
The pulse pressure variation is the variation in
pulse pressure over the ventilatory cycle,
measured over the previous 30 second period.
26
Introduction to the PiCCO-Technology Pulse
contour analysis
Summary pulse contour analysis - CO and volume
responsiveness
  • The PiCCO technology pulse contour analysis is
    calibrated by transpulmonary thermodilution
  • PiCCO technology analyses the arterial pressure
    curve beat by beat thereby providing real time
    parameters
  • Besides cardiac output, the dynamic parameters
    of volume responsiveness SVV (stroke volume
    variation) and PPV (pulse pressure variation) are
    determined continuously

27
Haemodynamic Monitoring
E. Introduction to PiCCO Technology
  1. Principles of function
  2. Thermodilution
  3. Pulse contour analysis
  4. Contractility parameters
  5. Afterload parameters
  6. Extravascular Lung Water
  7. Pulmonary Permeability

28
Introduction to the PiCCO-Technology
Contractility parameters
Contractility
Contractility is a measure for the performance of
the heart muscle
  • Contractility parameters of PiCCO technology
  • dPmx (maximum rate of the increase in pressure)
  • GEF (Global Ejection Fraction)
  • CFI (Cardiac Function Index)

kg
29
Introduction to the PiCCO-Technology
Contractility parameters
Contractility parameter from the pulse contour
analysis
dPmx maximum velocity of pressure increase
The contractility parameter dPmx represents the
maximum velocity of left ventricular pressure
increase.
30
Introduction to the PiCCO-Technology
Contractility parameters
Contractility parameter from the pulse contour
analysis
dPmx maximum velocity of pressure increase
n 220 y -120 (0,8 x) r 0,82 p lt 0,001
femoral dP/max mmHg/s
2000
1500
1000
500
0
0
1000
1500
2000
500
LV dP/dtmax mmHg/s
de Hert et al., JCardioThorVascAnes 2006
dPmx was shown to correlate well with direct
measurement of velocity of left ventricular
pressure increase in 70 cardiac surgery patients
31
Introduction to the PiCCO-Technology
Contractility parameters
Contractility parameters from the thermodilution
measurement
GEF Global Ejection Fraction
LA
4 x SV
GEF
GEDV
LV
RA
RV
  • is calculated as 4 times the stroke volume
    divided by the global end-diastolic volume
  • reflects both left and right ventricular
    contractility

32
Introduction to the PiCCO-Technology
Contractility parameters
Contractility parameters from the thermodilution
measurement
GEF Global Ejection Fraction
sensitivity
1
15
18
8
12
16
10
0,8
19
5
0,6
20
D FAC,
-20
-10
10
20
0,4
22
-5
0,2
-10
r076, plt0,0001 n47
0
0,2
0,4
0,6
0,8
0
-15
1 specifity
D GEF,
Combes et al, Intensive Care Med 30, 2004
Comparison of the GEF with the gold standard TEE
measured contractility in patients without right
heart failure
33
Introduction to the PiCCO-Technology
Contractility parameters
Contractility parameters from the thermodilution
measurement
CFI Cardiac Function Index
CI
CFI
GEDVI
  • is the CI divided by global end-diastolic volume
    index
  • is - similar to the GEF a parameter of both
    left and right ventricular contractility

34
Introduction to the PiCCO-Technology
Contractility parameters
Contractility parameters from the thermodilution
measurement
CFI Cardiac Function Index
sensitivity
1
15
3
4
2
3,5
10
0,8
5
0,6
5
D FAC,
-20
-10
10
20
0,4
-5
6
0,2
-10
r079, plt0,0001 n47
0
0,2
0,4
0,6
0,8
0
-15
1 specificity
D GEF,
Combes et al, Intensive Care Med 30, 2004
CFI was compared to the gold standard TEE
measured contractility in patients without right
heart failure
35
Haemodynamic Monitoring
E. Introduction to PiCCO technology
  1. Functions
  2. Thermodilution
  3. Pulse contour analysis
  4. Contractility parameters
  5. Afterload parameters
  6. Extravascular Lung Water
  7. Pulmonary Permeability

36
Introduction to the PiCCO Technology Afterload
parameter
Afterload parameter
SVR Systemic Vascular Resistance
(MAP CVP) x 80
SVR
CO
  • is calculated as the difference between MAP and
    CVP divided by CO
  • as an afterload parameter it represents a
    further determinant of the cardiovascular
    situation
  • is an important parameter for controlling
    volume and catecholamine therapies

MAP Mean Arterial Pressure CVP Central Venous
Pressure CO Cardiac Output 80 Factor for
correction of units
37
Introduction to the PiCCO Technology
Contractility and Afterload
Summary and Key Points
  • The parameter dPmx from the pulse contour
    analysis as a measure of the left ventricular
    myocardial contractility gives important
    information regarding cardiac function and
    therapy guidance
  • The contractility parameters GEF and CFI are
    important parameters for assessing the global
    systolic function and supporting the early
    diagnosis of myocardial insufficiency
  • The Systemic Vascular Resistance SVR calculated
    from blood pressure and cardiac output is a
    further parameter of the cardiovascular
    situation, and gives additional information for
    controlling volume and catecholamine therapies

38
Haemodynamic Monitoring
E. Introduction to PiCCO technology
  1. Principles of function
  2. Thermodilution
  3. Pulse contour analysis
  4. Contractility parameters
  5. Afterload parameters
  6. Extravascular Lung Water
  7. Pulmonary Permeability

39
Introduction to the PiCCO Technology
Extravascular Lung Water
Calculation of Extravascular Lung Water (EVLW)
ITTV ITBV EVLW
The Extravascular Lung Water is the difference
between the intrathoracic thermal volume and the
intrathoracic blood volume. It represents the
amount of water in the lungs outside the blood
vessels.
40
Introduction to the PiCCO Technology
Extravascular Lung Water
Validation of Extravascular Lung Water
EVLW from the PiCCO technology has been shown to
have a good correlation with the measurement of
extravascular lung water via the gravimetry and
dye dilution reference methods
Gravimetry
Dye dilution
ELWI by PiCCO
ELWIST (ml/kg)
Y 1.03x 2.49
40
25
20
30
n 209 r 0.96
15
20
10
10
5
R 0,97 P lt 0,001
0
0
20
30
10
15
25
5
0
10
0
20
ELWI by gravimetry
ELWITD (ml/kg)
Sakka et al, Intensive Care Med 26 180-187, 2000
Katzenelson et al,Crit Care Med 32 (7), 2004
41
Introduction to the PiCCO Technology
Extravascular Lung Water
EVLW as a quantifier of lung edema
High extravascular lung water is not reliably
identified by blood gas analysis
ELWI (ml/kg)
30
20
10
0
550
150
250
0
450
50
350
PaO2 /FiO2
Boeck J, J Surg Res 1990 254-265
42
Introduction to the PiCCO Technology
Extravascular Lung Water
EVLW as a quantifier of lung oedema
Extravascular lung water index (ELWI) normal
range3 7 ml/kg
Normal range
Pulmonary oedema
ELWI 7 ml/kg
ELWI 19 ml/kg
ELWI 14 ml/kg
ELWI 8 ml/kg
43
Introduction to the PiCCO Technology
Extravascular Lung Water
EVLW as a quantifier of lung oedema
Chest x ray does not reliably quantify
pulmonary oedema and is difficult to judge,
particularly in critically ill patients
D radiographic score
80
r 0.1 p gt 0.05
60
40
20
0
15
-10
-15
10
-20
D ELWI
-40
-60
-80
Halperin et al, 1985, Chest 88 649
44
Introduction to the PiCCO Technology
Extravascular Lung Water
Relevance of EVLW Assessment
The amount of extravascular lung water is a
predictor for mortality in the intensive care
patient
Mortality()
  • gt 21 n 54
  • 14 - 21 n 100
  • 7 - 14 n 174
  • lt 7 n 45

ELWI (ml/kg)
Sturm J in Lewis, Pfeiffer (eds) Practical
Applications of Fiberoptics in Critical Care
Monitoring, Springer Verlag Berlin - Heidelberg -
NewYork 1990, pp 129-139
Sakka et al , Chest 2002
45
Introduction to the PiCCO Technology
Extravascular Lung Water
Relevance of EVLW Assessment
Volume management guided by EVLW can
significantly reduce time on ventilation and ICU
length of stay in critically ill patients, when
compared to PCWP oriented therapy,
Intensive Care days
Ventilation Days
p 0,05
n 101
p 0,05
22 days
15 days
9 days
7 days
EVLW Group
PAC Group
PAC Group
EVLW Group
Mitchell et al, Am Rev Resp Dis 145 990-998,
1992
46
Haemodynamic Monitoring
E. Introduction to PiCCO Technology
  1. Principles of function
  2. Thermodilution
  3. Pulse contour analysis
  4. Contractility parameters
  5. Afterload parameters
  6. Extravascular Lung Water
  7. Pulmonary Permeability

47
Introduction to PiCCO Technology Pulmonary
Permeability
Differentiating Lung Oedema
PVPI Pulmonary Vascular Permeability Index
EVLW
EVLW
PVPI
PBV
PBV
  • is the ratio of Extravascular Lung Water to
    Pulmonary Blood Volume
  • is a measure of the permeability of the lung
    vessels and as such can classify the type of
    lung oedema (hydrostatic vs. permeability caused)

48
Introduction to PiCCO Technology Pulmonary
Permeability
Classification of Lung Oedema with the PVPI
Difference between the PVPI with hydrostatic and
permeability lung oedema
Lung oedema
permeability
hydrostatic
PBV
PBV
EVLW
EVLW
EVLW
EVLW
PBV
PBV
PVPI normal (1-3)
PVPI raised (gt3)
49
Introduction to PiCCO Technology Pulmonary
Permeability
Validation of the PVPI
PVPI can differentiate between a pneumonia caused
and a cardiac failure caused lung oedema.
PVPI
4
3
2
Pneumonia
Cardiac insufficiency
16 patients with congestive heart failure and
acquired pneumonia. In both groups EVLW was 16
ml/kg.
Benedikz et al ESICM 2003, Abstract 60
50
Introduction to PiCCO Technology Pulmonary
Permeability
Clinical Relevance of the Pulmonary Vascular
Permeability Index
EVLWI answers the question
How much water is in the lungs?
PVPI answers the question
Why is it there?
and can therefore give valuable aid for therapy
guidance!
51
Introduction to PiCCO Technology EVLW and
Pulmonary Permeability
Summary and Key Points
  • EVLW as a valid measure for the extravascular
    water content of the lungs is the only parameter
    for quantifying lung oedema available at the
    bedside.
  • Blood gas analysis and chest x-ray do not
    reliably detect and measure lung edema
  • EVLW is a predictor for mortality in intensive
    care patients
  • The Pulmonary Vascular Permeability Index can
    differentiate between hydrostatic and a
    permeability caused lung oedema
Write a Comment
User Comments (0)
About PowerShow.com