Title: Mark Acton (grad)
1Mark Acton (grad) Kathy-Anne Brickman
(grad) Louis Deslauriers (grad) Patricia Lee
(grad) Martin Madsen (grad) David Moehring
(grad) Steve Olmschenk (grad) Daniel Stick (grad)
US National Security Agency
US Advanced Research and Development Activity
David Hucul (undergrad) Rudy Kohn
(undergrad) Mark Yeo (undergrad)
US Army Research Office
NSF
Boris Blinov (postdoc) Paul Haljan
(postdoc) Winfried Hensinger (postdoc) Chitra
Rangan (postdoc/theory to U. Windsor) Luming
Duan (Prof., UM) Jim Rabchuk (Visiting Prof.,
West. Illinois Univ.)
National Science Foundation
FOCUS
FOCUS Center
http//iontrap.physics.lsa.umich.edu/
2Trapped Atomic Ions I Quantum computing and
motional quantum gates
Christopher Monroe FOCUS Center Department of
Physics University of Michigan
3There's Plenty of Room at the Bottom (1959 APS
annual meeting)
Richard Feynman
When we get to the very, very small world say
circuits of seven atoms - we have a lot of new
things that would happen that represent
completely new opportunities for design. Atoms on
a small scale behave like nothing on a large
scale, for they satisfy the laws of quantum
mechanics
4A quantum computer hosts quantum bits that can
store superpositions of 0 and 1 classical
bit 0 or 1 quantum bit ?0? ?1?
5GOOD NEWS quantum parallel processing on 2N
inputs
6GOOD NEWS! quantum interference
depends on all inputs
quantum logic gates
7Key resource Quantum Entanglement
not just a choice of basis e.g. ?? - ??
vs. 0,0? must be able to access subsystems
individually (see Bell ?)
8 very hard to quantify (esp. mixed states)
?1 ????? ????? ?2 ????? ?????
????? ????? ????? ?????
9(No Transcript)
10Quantum computer hardware requirements
- Must make states like
- 0000? 1111?
11Quantum Information and Atomic Physics
controlled coupling
N qubits
to gt99 accuracy
provided things have been done right
12Trapped Atomic Ions
199Hg
0.3 mm
J. Bergquist, NIST
J. Bergquist (NIST)
Ion Trap QC Groups
Aarhus Boulder (NIST) Munich (MPQ) Hamburg Innsbru
ck
Los Alamos McMaster Michigan Oxford Teddington
(NPL)
132 Cd ions
14(No Transcript)
15Atomic Ion Internal Energy Levels (think
HYDROGEN)
Ca, Sr, Ba, Yb
P
Energy
D
??
t ? 1 sec
optical (1015 Hz)
??
S
16Hyperfine Structure States of relative
electron/nuclear spin
State ??
State ??
N S
N S
N S
S N
17111Cd atomic structure
2,2
2,1
2P3/2
l215nm
??
0,0
2S1/2
14.53 GHz
1,1
1,0
1,-1
??
18111Cd qubit measurement
g/2p 50 MHz
2,2
2,1
2P3/2
l215nm
??
0,0
2S1/2
14.53 GHz
1,1
1,0
1,-1
bright
??
19111Cd qubit measurement
g/2p 50 MHz
2,2
2,1
2P3/2
99.7 detection efficiency
l215nm
??
0,0
2S1/2
14.53 GHz
1,1
1,0
1,-1
dark
??
20111Cd qubit manipulation microwaves
2,2
2,1
2P3/2
l215nm
microwaves
??
0,0
2S1/2
14.53 GHz
1,1
1,0
1,-1
??
coupling rate gm
21Microwave Rabi Flopping
t
measure fluorescence (bright or dark)
prepare 00
mwaves
gm ? 10-100kHz
sweep t
1.0
0.8
0.6
Prob(1000)
0.4
0.2
0.0
0.0
0.2
0.4
0.6
0.8
1.0
Time t (ms)
1.0
0.8
0,0
0.6
Prob(1100)
0.4
1,1
1,0
1,-1
0.2
0.0
0.0
0.2
0.4
0.6
0.8
1.0
Time (ms)
22Single shot Rabi Flopping
increment t
t
measure fluorescence (bright or dark)
prepare 00
mwaves
1
0.8
0.6
Prob(1000)
0.4
0.2
0
0
50
100
150
200
250
300
350
400
t (ms)
23Microwave Ramsey Inteferometry
p/2
p/2
t
measure fluorescence
prepare 00
mwaves
sweep t
1.0
0.8
0.6
Prob(??)
0.4
0.2
0.0
0.0
0.2
0.4
0.6
0.8
1.0
Time (ms)
1.0
0.8
0,0
Prob(??)
0.6
0.4
1,1
1,0
1,-1
0.2
0.0
0.0
0.2
0.4
0.6
0.8
1.0
Time (ms)
24111Cd qubit manipulation optical Raman
transitions
2,2
2,1
g/2p 50 MHz
2P3/2
?
?/2p ? 0.1-1 THz
coherent coupling rate (good) gR
g1g2/D direct coupling to P (bad) Rdec g
g1g2/D2 want small g/D (but DltDFS!)
l215nm
??
0,0
2S1/2
14.53 GHz
1,1
1,0
1,-1
??
250.3 mm
J. Bergquist, NIST
2640Ca
Thanks R. Blatt, Univ. Innsbruck
27Another Qubit The quantized motion of a single
mode of oscillation
? harmonic motion of a collective single mode
described by quantum states n?m 0?m, 1?m,
2?m,..., where E hw(n½) PHONONS FORMALLY
EQUIVALENT TO PHOTONS ? motional data-bus
quantum bit spans n?m 0?m and 1?m
2
1
0
logical 0?m
logical 1?m
28Coupling (internal) qubits to (external) bus qubit
??
??
??
??
??
radiation tuned to w0-w
29excitation on 1st lower (red) motional sideband
(n0)
w few MHz
30excitation on 1st lower (red) motional sideband
(n0)
P3/2
2
1
0
S1/2
??
2
1
0
??
31P3/2
P3/2
2
2
1
1
0
0
S1/2
S1/2
??
??
2
2
1
1
0
0
??
??
Mapping (??? ???) 0?m ? ?? (?0?m
?1?m)
32P3/2
P3/2
2
2
1
1
0
0
S1/2
S1/2
??
??
2
2
1
1
0
0
??
??
Mapping (??? ???) 0?m ? ?? (?0?m
?1?m)
33Spin-motion coupling some math
34stationary terms arise in H at particular values
of d
35Raman spectrum of single 111Cd ion (start in
??)
Blue sideband ?,n? ? ?,n-1?
Red Sideband ?,n? ? ?,n1?
1.0
Doppler Cooling
P?
0.5
0.0
-3.6 3.6
d/2p (MHz)
36Raman Sideband Laser-Cooling
.
.
n
n-1
??
??
n-1
n-1
??
??
stimulated Raman p-pulse on blue sideband
spontaneous Raman recycling
?Dn? ? wrecoil/wtrap ltlt 1
Dn-1
37Raman spectrum of single 111Cd ion (3.6 MHz
trap)
Blue sideband ?,n? ? ?,n-1?
Red Sideband ?,n? ? ?,n1?
1.0
Doppler Cooling
P?
?n? ? 6
0.5
0.0
-3.6 3.6
d/2p (MHz)
1.0
Doppler Raman Cooling
P?
?n? lt 0.05
0.5
0.0
-3.6 3.6
d/2p (MHz)
x0 3 nm
L. Deslauriers et al., Phys. Rev. A 70, 043408
(2004)
38Decoherence of Trapped Ion Motion
Heating of a single Cd ion from n?0
10
Linear Trap (100 mm to nearest electrode)
Heating rate d?n?/dt (quanta/msec)
1
Heating Rate d?n?/dt (quanta/msec)
0.1
Quadrupole Trap (160 mm to nearest electrode)
0.01
1
2
3
4
5
6
Trap Frequency (MHz)
39 Heating history in 3-6 MHz traps
heating rate (quanta/msec)
2
10
111Cd Michigan (2003)
9Be
1
10
199Hg NIST (1989)
9Be NIST (1995-)
137Ba
10
0
40Ca Innsbruck (1999)
137Ba IBM-Almaden (2002)
-1
10
111Cd
199Hg
-2
10
40Ca
-3
10
0.04
0.1
0.2
0.3
0.6
Distance to nearest trap electrode mm
Q. Turchette, et. al., Phys. Rev. A 61, 063418-8
(2000) L. Deslauriers et al., Phys. Rev. A 70,
043408 (2004)
40Electric Field Noise History in 3-6 MHz traps
Heating due to fluctuating patch potentials (?)
SE(w) ? 10-12 (V/m)2/Hz
137Ba
9Be
2
10
d
10
1
111Cd
199Hg
0
10
1/d 4
40Ca
10
-1
est. thermal noise
1/d4 guide-to-eye
-2
10
0.04
0.1
0.2
0.3
0.6
Trap dimension mm
41- Quantum Gate Schemes for Trapped Ions
- Cirac-Zoller
- Mølmer-Sørensen
- Fast Impulsive Gates
42Universal Quantum Logic Gates with Trapped
Ions
Cirac and Zoller, Phys. Rev. Lett. 74, 4091
(1995)
n0
Step 1 Laser cool collective motion to rest
43Universal Quantum Logic Gates with Trapped
Ions
Cirac and Zoller, Phys. Rev. Lett. 74, 4091
(1995)
j
k
laser
Step 2 Map jth qubit to collective motion
44Universal Quantum Logic Gates with Trapped
Ions
Cirac and Zoller, Phys. Rev. Lett. 74, 4091
(1995)
j
k
laser
Step 3 Flip kth qubit depending upon motion
45Universal Quantum Logic Gates with Trapped
Ions
Cirac and Zoller, Phys. Rev. Lett. 74, 4091
(1995)
j
k
n0
laser
Step 4 Remap collective motion to jth qubit
(reverse of Step 1)
Net result ??j ??j ??k ? ??j ??k
??j??k
46Demonstrations of Cirac-Zoller CNOT Gate
- CNOT between motion and spin (1 ion) F85
- C.M., et. al., Phys. Rev. Lett. 75, 4714
(1995)
47During the gate (at some point), the state of
an ion qubit and motional bus state is
? a??0?m b ??1?m
Decoherence Kills the Cat
48Direct coupling between ??? and ??? with
bichromatic excitation ?
???
e
??? eif???
?2
uniform illumination
???
49Bichromatic coupling to sidebands
Mølmer/Sørensen Milburn/Schneider/James (1999)
???
n
e
n1
???, ???
n
n-1
uniform illumination
???
n
50Mølmer/Sørensen 2-ion entangling quantum gate
a super p/2-pulse
n1
n
???
n-1
n
???
n
???
n1
n
???
n-1
- Big improvement
- no focussing required
- no n0 cooling required
- less sensitive to heating
51Can scalable to arbitrary N!
e.g., 6 ions
- Coupling H g Jx2
- flips all pairs of spins
- ? Entangling rate ? N-1/2
52Four-qubit quantum logic gate
????? ? ????? eif?????
Sackett, et al., Nature 404, 256 (2000)
53Same idea in a different basis
N1 ion Force F0???? (spin-dependent force)
p
x
54Strong Field Impulsive Gates
strong coupling WRabi gtgt w and WRabit 1
- off-resonant laser pulse differential AC Stark
shift - provides qubit-state-dependent impulse
0,0
1,-1
2P1/2
1,1
e.g. 111Cd
D
1,0
s
??
2S1/2
0,0
14.5 GHz
1,1
1,-1
1,0
??
55r
? ?
? ?
d
d
dipole engineering Udd m1m2/r3 (ed)2/r3
d(t)
?sub ms
t
quantum phase gate
??? ? ??? ???
??? ? eik-if/2 ??? ???
k linear shift f nonlinear shift 2Uddt/h
??? ? e-ik-if/2 ??? ???
??? ? ??? eif ???
Cirac Zoller (2000)
56(b) resonant ultrafast kicks
Poyatos, Cirac, Blatt Zoller, PRA 54, 1532
(1996) Garcia-Ripoll, Zoller, Cirac, PRL 91,
157901 (2003)
two sequential p-pulses
e?
e?
p-pulse up
p-pulse down
??
??
??
??
spin-dependent impulse
57The trajectory of a normal motional mode of two
ions in phase space under the influence of four
photon kicks. Gray curve free evolution. Black
curve four impulses kick the trajectory in phase
space, with an ultimate return to the free
trajectory after 1.08 revolutions.
58Fast version of sz phase gate does not require
Lamb-Dicke regime!
2P3/2
1/(15 fsec) FS splitting
e?
te ? 3nsec
2P1/2
e.g. 111Cd
l226.5 nm 10 psec
s
no kick
2S1/2
0,0
1,1
1,-1
1,0
??
??
require tFS ltlt tpulse ltlt te
59- Summary
- Trapped Ions satisfy all DiVincenzo
requirements - for quantum computing
- 1. identifiable qubits
- 2. efficient initialization
- 3. efficient measurement
- 4. universal gates
- 5. small decoherence
SO WHATS THE PROBLEM?!
60(No Transcript)
61(No Transcript)
62ENIAC (1946)
63Next Ion Traps and how to scale them!