Title: VOLTAMMETRIA e VOLTAMMETRIA CICLICA, VC
1VOLTAMMETRIA e VOLTAMMETRIA CICLICA, VC
- Una semplice introduzione
2È una tecnica potenziodinamica
- Il potenziale viene fatto variare nel tempo
- Questa variazione è lineare
- Si misura la corrente di cella istante per
istante - Si fa il grafico della corrente contro il
potenziale
3La variazione del potenziale nel
tempo(voltammetria semplice)
POTENZIALE
tempo
4La variazione del potenziale nel
tempo(voltammetria ciclica)
POTENZIALE
tempo
5La variazione del potenziale nel tempo(più cicli)
POTENZIALE
tempo
6Definizione dei parametri della VC
7DESCRIZIONE e IMPOSTAZIONE VOLTAMMETRIA SEMPLICE
CORRENTE
POTENZIALE
POTENZIALE
tempo
2s
8DESCRIZIONE e IMPOSTAZIONE DELLA VC
xx
POTENZIALE
750 mV
tempo
2s
I
II
segmento
9DESCRIZIONE e IMPOSTAZIONE DELLA VC
xx
yy
xx
yy mV
POTENZIALE
Initial ExxmV
tempo
2s
10E inizialenon avviene reazione, la
concentrazione C è indipendente da xGrafico
della concentrazione Grafico della VC
11Segmento Iinizia la reazione, la concentrazione
C cade alla superficie, ma la corrente aumenta
secondo la eq. Butler-VolmerGrafico della
concentrazione Grafico della VC
12Segmento Icontinua la reazione, la
concentrazione C cade a 0 alla superficie, la
corrente raggiunge un massimo (massimo gradiente
di C)Grafico della concentrazione
Grafico della VC
13Segmento Ilo strato diffusionale si allarga,
la corrente decade come t-1/2 poiché il ora
gradiente di C è sempre meno intensoGrafico
della concentrazione Grafico della VC
14Segmento IIinizia la scansione inversa, ma la
corrente diminuisce ancora come t-1/2 ci
avviciniamo però al potenziale redoxGrafico
della concentrazione Grafico della VC
15(No Transcript)
16Segmento IIora la corrente SI INVERTE per la
riossidazione di R ad O, avendo oltrepassato il
Eredox Grafico della concentrazione
Grafico della VC
17Segmento IIAlcuni ioni R si sono allontanati e
devono ridiffondere indietro verso lelettrodo
Grafico della concentrazione
Grafico della VC
18VC completasi individuano i potenziali (E) e le
correnti (i) di picco a- anodico c- catodico e
il potenziale redox, o formale E0
2E0 Epa Epc
19If a redox system remains in equilibrium
throughout the potential scan, the
electrochemical reaction is said to be
reversible. In other words, equilibrium requires
that the surface concentrations of O and R are
maintained at the values required by the Nernst
Equation. Under these conditions, the following
parameters characterize the cyclic voltammogram
of the redox process.
The peak potential separation (Epa - Epc) is
equal to 57/n mV for all scan rates where n is
the number of electron equivalents transferred
during the redox process. The peak width is
equal to 28.5/n mV for all scan rates. The peak
current ratio (ipa/ipc) is equal to 1 for all
scan rates. The peak current function increases
linearly as a function of the square root of v.
20CV a diverse velocità di scansione
Electrode area 0.1cm2 ks 1cm/s Eo 0.3
V DO DR 1 x 10-5 cm/s
21The initial electrode potential (Ei ) is set in
a region where no reaction occurs. The potential
is then scanned in the forward direction at a
given scan rate (v) such that it can be
determined at any given time t by the
relationship E(t) Ei - v t
22As the voltage becomes more positive (oxidising)
value is reached where ferrocene carboxylic acid
(reduced form) is converted to the oxidised
ferricinium species. This results in the
appearance of the anodic peak. Assuming that the
reaction kinetics are very fast compared to the
scan rate, the equilibrium involving the
concentrations of reduced and oxidised species at
the electrode surface will adjust rapidly
according to the Nernst equation E Eo'
RT/nF ln CO /CR Where CO and CR represent the
surface concentrations of oxidised and reduced
species. If the system is diffusion controlled
(the normal situation for cyclic voltammetry)
then Fick's law of diffusion holds for both O and
R.
23CV a diverse velocità di scansioneip 2.69 x
105 n3/2 A DO1/2 v1/2 COequazione detta di
Randles-Sevcik
24CRONOAMPEROMETRIA
- Una semplice introduzione
25- Chronoamperometry (CA) and chronocoulometry (CC)
have the same potential wave form - the potential
step - which is one of the simplest potential
wave forms. As shown below (F1), the potential is
changed instantaneously from the Initial
Potential to the First Step Potential, and it is
held at this value for the First Step Time. This
is a single potential step experiment. In a
double potential step experiment, the potential
is changed to the Second Step Potential after the
First Step Time, and it is then held at this
value for the Second Step Time. In CA, the
current is monitored as a function of time,
whereas in CC, the charge is monitored as a
function of time. It is important to note that
the basic potential step experiment on the
epsilon is CA that is, during the experiment,
the current is recorded as a function of time.
However, after the experiment, the data can also
be displayed as charge as a function of time (the
charge is calculated by integrating the current).
Hence, chronocoulometry data can be obtained. CA
is a standard technique on the epsilon.
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30current
31(No Transcript)
32The analysis of chronoamperometry (CA) data is
based on the Cottrell equation, which defines the
current-time dependence for linear diffusion
control i nFACD1/2p-1/2t -1/2 where n
number of electrons transferred/molecule F
Faraday's constant (96,500 C mol-1) A electrode
area (cm2) D diffusion coefficient (cm2 s-1) C
concentration (mol cm-3) This indicates that,
under these conditions, there is a linear
relationship between the current and the 1/square
root of time. A plot of i vs. t-1/2 is often
referred to as the Cottrell plot. The analysis
of chronocoulometry (CC) data is based on the
Anson equation, which defines the charge-time
dependence for linear diffusion control Q
2nFACD1/2p-1/2t 1/2 Therefore, under these
conditions, there is a linear relationship
between the charge and the square root time. A
plot of Q vs. t1/2 is often referred as the Anson
plot.