Title: Challenges in Ambient Intelligence
1Fast Turbulent Deflagration and DDT of
Hydrogen-Air Mixtures in Small Obstructed
Channels A.Teodorczyk, P.Drobniak,
A.Dabkowski Warsaw University of Technology,
Poland
2DDT simulations
- V.Gamezo et al., 31st Symposium International on
Combustion, Heidelberg 2006 - stoichiometric hydrogen-air mixture at 0.1 MPa
- Reactive Navier-Stokes equations with one-step
Arrhenius kinetics - 2D channel with obstacles length 2m height H
1, 2, 4, 8 cm - Grid 2 ?m (min)
3DDT simulations
V.Gamezo et al., 31st Symposium International on
Combustion, Heidelberg 2006
2H
H
H/2
4DDT simulations
Source Gamezo et al.. 21st ICDERS, July 23-27,
2007, Poitiers
5Objectives
- Generate experimental data for the validation of
CFD simulations - Determine flame propagation regimes and
velocities as a function of - blockage ratio
- Obstacle spacing
- Hydrogen-air mixture stoichiometry
6- Channel
- - length 2 m,
- width 0.11 m
- heigth H 0.08 m
L
H
h
Obstacle heigth h 0.0, 0.02, 0.04,
0.06 m Blockage ratio BR 0.0, 0.25,
0.5, 0.75 Obstacle spacing L 0.08, 0.16,
0.32 m Stoichiometry ? 0.6, 0.8,
1.0 Initial conditions 0.1 MPa, 293 K
7- Diagnostics (pairs)
- - 4 piezoquartz pressure transducers
- - 4 ion probes
- Ignition
- - weak spark plug
-
- Data acquisition
- - amplifier
- - 8 cards (10MHz each)
- - computer
H 80 mm
8- Parameters of CJ Detonation
? VCJ m/s aCP m/s ? mm
0.6 1709 974 40
0.8 1866 1045 13
1.0 1971 1092 8
VCJ detonation velocity aCP sound speed in
combustion products ? - detonation cell size
9Results BR 0.25
? L 0.08 m L 0.16 m L 0.32 m
0.6 FD 500 m/s FD 600 m/s
0.8 DDT FD 1000 m/s
1.0 DET 1900 m/s DDT
FD Fast Deflagration DDT Deflagration to
Detonation Transition DET - Detonation
10Results BR 0.5
? L 0.08 m L 0.16 m L 0.32 m
0.6 FD 650 m/s FD 600 m/s
0.8 FD 900 m/s DDT
1.0 DDT DET 2000 m/s
FD Fast Deflagration DDT Deflagration to
Detonation Transition DET - Detonation
11Results BR 0.75
? L 0.08 m L 0.16 m L 0.32 m
0.6 FD 550 m/s FD 500 m/s FD 500 m/s
0.8 FD 600 m/s FD 650 m/s FD 900 m/s
1.0 FD 700 m/s FD 700 m/s FD 950 m/s
FD Fast Deflagration DDT Deflagration to
Detonation Transition DET - Detonation
12Average velocity of flame (open) and pressure
wave (solid) for L 160 mm
13Average velocity of flame (open) and pressure
wave (solid) for L 320 mm
14- Results L 0.32 m, BR 0.25, ? 1
P1
P2
P3
P4
15- Results P3, L 0.16 m, BR 0.5
?0.8
?1.0
16- Results P4, L 0.16 m, BR 0.25
?0.6
?0.8
17Run-up distance for DDT
S.Dorofeev
In tubes at 0.1 MPa, H2-air
In our channel
18DDT limits
Characteristic dimension
Dorofeev criterion for DDT
Lch for the present study
BR L 0.08 m L 0.16 m L 0.32 m
0.25 0.48 m 0.8 m
0.5 0.24 m 0.4 m
0.75 0.107 m 0.16 m 0.2 m
? 7?
0.6 0.28 m
0.8 0.091 m
1.0 0.056 m
19DDT limits in obstructed channels (H2-air)
w our studies L320mm w4 - h40mm, Ř-1.0 w5 -
h40mm, Ř-0.8 w7 - h20mm, Ř-1.0 L160mm w13 -
h40mm, Ř-1.0 w16 - h20mm, Ř-1.0 w17 - h20mm, Ř-0.8
S.Dorofeev
20- Obstacles giving high channel blockage ratio are
destructive for the flame propagation (large
momentum losses) and regardless turbulizing
effect they decrease hazard of DDT - The importance of blockage ratio changes with the
obstacle density. The higher blockage ratio the
larger is optimum obstacle separation distance
resulting in highest hazard for DDT. - The obstacle density is less important for the
lean mixtures (? 0.6) for which no detonation
was observed in the experiments. - The predictions were found to be in general
agreement with the correlation developed by
Dorofeev et al. - Advanced simulations show DDT very well
qualitatively but still are not able to predict
it quantitatively (transition distance ?,
transition probability?)