8.7 Modeling with Exponential - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

8.7 Modeling with Exponential

Description:

8.7 Modeling with Exponential & Power Functions p. 509 Just like 2 points determine a line, 2 points determine an exponential curve. Write an Exponential function, y ... – PowerPoint PPT presentation

Number of Views:61
Avg rating:3.0/5.0
Slides: 17
Provided by: mer1153
Category:

less

Transcript and Presenter's Notes

Title: 8.7 Modeling with Exponential


1
8.7 Modeling with Exponential Power Functions
  • p. 509

2
Just like 2 points determine a line, 2 points
determine an exponential curve.
3
Write an Exponential function, yabx whose graph
goes thru (1,6) (3,24)
  • Substitute the coordinates into yabx to get 2
    equations.
  • 1. 6ab1
  • 2. 24ab3
  • Then solve the system

4
Write an Exponential function, yabx whose graph
goes thru (1,6) (3,24) (continued)
  • 1. 6ab1 ? a6/b
  • 2. 24(6/b) b3
  • 246b2
  • 4b2
  • 2b

a 6/b 6/2 3
So the function is Y32x
5
Write an Exponential function, yabx whose graph
goes thru (-1,.0625) (2,32)
  • .0625ab-1
  • 32ab2
  • (.0625)a/b
  • b(.0625)a
  • 32b(.0625)b2
  • 32.0625b3
  • 512b3
  • b8

y1/2 8x
a1/2
6
  • When you are given more than 2 points, you can
    decide whether an exponential model fits the
    points by plotting the natural logarithms of the
    y values against the x values. If the new points
    (x, lny) fit a linear pattern, then the original
    points (x,y) fit an exponential pattern.

7
(-2, ¼) (-1, ½) (0, 1) (1, 2)
(x, lny) (-2, -1.38) (-1, -.69) (0,0) (1, .69)
8
Finding a model.
  • Cell phone subscribers 1988-1997
  • t years since 1987

t 1 2 3 4 5 6 7 8 9 10
y 1.6 2.7 4.4 6.4 8.9 13.1 19.3 28.2 38.2 48.7
                     
lny 0.47 0.99 1.48 1.86 2.19 2.59 2.96 3.34 3.64 3.89
9
Now plot (x,lny)
Since the points lie close to a line, an
exponential model should be a good fit.
10
  • Use 2 points to write the linear equation.
  • (2, .99) (9, 3.64)
  • m 3.64 - .99 2.65 .379
    9 2 7
  • (y - .99) .379 (x 2)
  • y - .99 .379x - .758
  • y .379x .233 LINEAR MODEL FOR (t,lny)
  • The y values were lns xs were t so
  • lny .379t .233 now solve for y
  • elny e.379t .233 exponentiate both
    sides
  • y (e.379t)(e.233) properties of exponents
  • y (e.233)(e.379t) Exponential model

11
  • y (e.233)(e.379t)
  • y 1.26 1.46t


12
You can use a graphing calculator that performs
exponential regression to do this also. It uses
all the original data.Input into L1 and L2and
push exponential regression
13
L1 L2 here Then edit enter the data. 2nd
quit to get out.
Exp regression is 10
So the calculators exponential equation is y
1.3 1.46t which is close to what we found!
14
Modeling with POWER functions
a 5/2b 9 (5/2b)6b 9 53b 1.8 3b log31.8
log33b .535 b a 3.45 y 3.45x.535
  • y axb
  • Only 2 points are needed
  • (2,5) (6,9)
  • 5 a 2b
  • 9 a 6b

15
  • You can decide if a power model fits data points
    if
  • (lnx,lny) fit a linear pattern
  • Then (x,y) will fit a power pattern
  • See Example 5, p. 512
  • You can also use power regression on the
    calculator to write a model for data.

16
Assignment
Write a Comment
User Comments (0)
About PowerShow.com