Title: Background Review
1Background Review
- Elementary functions
- Complex numbers
- Common test input signals
- Differential equations
- Laplace transform
- Examples
- properties
- Inverse transform
- Partial fraction expantion
- Matlab
2Elementary functions
3The most beautiful equation
- It contains the 5 most important numbers 0, 1,
i, p, e. - It contains the 3 most important operations ,
, and exponential. - It contains equal sign for equations
4Elementary functions
5Elementary functions
6Elementary functions
7Elementary functions
8Elementary functions
- F(t)3sin 3t 4cos 3t
- F(t)Asin(3t-d)Acosd sin3t Asin d cos3t
- Acos d 3
- Asin d -4
- A225, A5
- tan d -4/3, d-53.13o
- F(t)5sin(3t53.13o)
9Complex Numbers
- X210 ? xi where i2-1
- X240, then x2i, or 2j
- If z1x1iy1, z2x2iy2
- Then z1 z2 (x1 x2)i(y1 y2)
- z1 z2(x1iy1)(x2iy2)(x1x2 -y1y2) i(x1y2
x2y1)
10Polar form of Complex Numbers
- zxiy, lets put xrcosq, y rsinq
- Then z r(cosqi sinq) r cisq r?q
- Absolute value (modulus) r2x2y2
- Argument q tan-1(y/x)
- Example z1i
11Euler Formula
- zxiy
- ez exiy ex eiy ex (cos yi sin y)
- eix cos xi sin x cis x
- eix sqrt(cos2 x sin2 x) 1
- zr(cosqi sinq)r eiq
- Find e1i
- Find e-3i
12In Matlab
- gtgt z112i
- z1 1.0000 2.0000i
- gtgt z23i5
- z2 3.0000 5.0000i
- gtgt z3z1z2
- z3 4.0000 7.0000i
- gtgt z4z1z2
- z4 -7.0000 11.0000i
- gtgt z5z1/z2
- z5 0.3824 0.0294i
- gtgt r1abs(z1)
- r1 2.2361
- gtgt theta1angle(z1)
- theta1 1.1071
- gtgt theta1angle(z1)180/pi
- theta1 63.4349
- gtgt real(z1)
- ans 1
- gtgt imag(z1)
- ans 2
13Poles and zeros
- Pole of G(s) is a value of s near which the value
of G goes to infinity - Zero of G(s) is a value of s near which the value
of G goes to zero.
14Poles and zeros in Matlab
- gtgt stf(s)
- Transfer function s
- gtgt Gexp(-2s)/s/(s1)
- Transfer function
- 1
- exp(-2s) -----------
- s2 s
- gtgt pole(G)
- ans 0, -1
- gtgt zero(G)
- ans Empty matrix 0-by-1
15Test waveforms used in control systems
161st order differential equations
- y a y 0 y(0)C, and zero input
- Solution y(t) Ce-at
- y a y d(t) y(0)0, input unit impulse
- Unit impulse response h(t) e-at
- y a y f(t) y(0)C, non zero input
- Total response y(t) zero input response zero
state response Ce-at h(t) f(t) - Higher order LODE use Laplace
17Laplace Transform
Unit Step Function u(t)
18Laplace Transform
19Name____________
The single most important thing to remember is
that whenever there is feedback, one should worry
about __________
20Laplace Transform
21Laplace Transform
22Laplace Transform
23Laplace Transform
24Laplace transform table
25Laplace transform theorems
26Laplace Transform
27Laplace Transform
28Laplace Transform
29Laplace Transform
- y9y0, y(0)0, y(0)2
- L(y)s2Y(s)-sy(0)-y(0) s2Y(s)-2
- L(y)Y(s)
- (s29)Y(s)2
- Y(s)2/ (s29)
- y(t)(2/3) sin 3t
30Matlab
F2/(s29) F 2/(s29) gtgt filaplace(F) f
2/99(1/2)sin(9(1/2)t) gtgt simplify(f)
ans 2/3sin(3t)
31Laplace Transform
- y2y5y0, y(0)2, y(0)-4
- L(y)s2Y(s)-sy(0)-y(0) s2Y(s)-2s4
- L(y)sY(s)-y(0)sY(s)-2
- L(y)Y(s)
- (s22s5)Y(s)2s
- Y(s)2s/ (s22s5)2(s1)/(s1)222-2/(s1)222
- y(t) e-t(2cos 2t sin 2t)
32Matlab
gtgt F2s/(s22s5) F 2s/(s22s5) gtgt
filaplace(F) f 2exp(-t)cos(2t)-exp(-t)sin
(2t)
33Laplace transform
- Y-2 y-3 y0, y(0) 1, y(0) 7
- Y2 y-8 y0, y(0) 1, y(0) 8
- Y2 y-3 y0, y(0) 0, y(0) 4
- 4Y4 y-3 y0, y(0) 8, y(0) 0
- Y2 y y0, y(0) 1, y(0) -2
- Y4 y0, y(0) 1, y(0) 1
34Y2 y y0, y(0) 1, y(0) -2 gtgt A0 1-1
-2 B01 C1 0 D0 gtgt x01-2 gtgt
tsym('t') gtgt yCexpm(At)x0 y
exp(-t)-texp(-t) Y2 y yf(t)u(t), y(0) 2,
y(0) 3
35Partial Fraction
36Partial Fraction
37Partial fraction repeated factor
38Partial fraction repeated factor
But No FUN
39Partial fraction exercise
40Matlab
gtgt r p kresidue(n,d) r 1 2 p
1 0 k
gtgt d1 -1 0 d 1 -1 0 gtgt n3
-2 n 3 -2
1/(s-1) 2/s
41Matlab
gtgt r p kresidue(n,d) r 1.5000
-1.5000 1.0000 p 3 -3 0 k
gtgt n1 9 -9 n 1 9 -9 gtgt d1 0 -9
0 d 1 0 -9 0
1.5/(s-3)-1.5/(s3)1/s
42Matlab
gtgt r p kresidue(n,d) r 2.0000
-3.0000 1.0000 p 2.0000 -2.0000
1.0000 k
gtgt n11 -14 n 11 -14 gtgt d1 -1 -4 4 d
1 -1 -4 4
2/(s-2)-3/(s2)1/(s-1)
43Matlab
gtgt r p kresidue(a,b) r 1 -1 p
-1 -1 k
gtgt b1 2 1 b 1 2 1 gtgt a1 0 a
1 0
1/(s1)-1/(s1)2
44gtgt Y(s4-7s313s24s-12)/s2/(s-3)/(s2-3s
2) Transfer function s4 - 7 s3 13 s2 4 s
- 12 ------------------------------------ s5
- 6 s4 11 s3 - 6 s2 gtgt n,dtfdata(Y,'v') n
0 1 -7 13 4 -12 d 1
-6 11 -6 0 0 gtgt r,p,kresidue(n,d
) r 0.5000 -2.0000 -0.5000
3.0000 2.0000 p 3.0000 2.0000
1.0000 0 0 k