Title: Graph Theory
1Graph Theory
2What are Graphs?
Not
- ???????????????????????????????????????????
????????????????????????????????????
???????????(coordinate) - ?????????discrete mathematics???????????????????
??????????????????????????????????????????????????
??????????????????????????????????????? - ???????????????????????????????????????????
????????????? ??????????????????? ???????????????
???
3Simple Graphs
- ????????????????????? R ????????????????????(symme
tric), ?????????(irreflexive) - ?????????????(simple graph) G(V,E)??????????
- ??? V ??????(vertices)
- ??? E ???????(edges) ?????????????????????????
u,v ? V, ?????? uRv
Visual Representationof a Simple Graph
4Example of a Simple Graph
- ??? V ????????????????????????????????
- ????, VFL, GA, AL, MS, LA, SC, TN, NC
- ??? Eu,vu ?????????????? v
- FL,GA,FL,AL,FL,MS, FL,LA,GA,AL,AL,
MS, MS,LA,GA,SC,GA,TN,
SC,NC,NC,TN,MS,TN, MS,AL
NC
TN
SC
MS
AL
GA
LA
FL
5Multigraphs
- ????????????????????? ????????????????????????????
??????????????????? - ????????????(multigraph) G(V, E, f )
??????????????????? V ,?????????? E
????????????fE?u,vu,v?V ? u?v - ???????? ???? ??????????? ????????????????????????
?????????
Paralleledges
6Pseudographs
- ???????????????????? ?????????????????????????????
??????? (R ????????????????????) - ?????????(pseudograph) G(V, E, f )
??????fE?u,vu,v?V ???? e?E ??????? ???
f(e)u,uu - ???????? ???? ?????? ?????????????
- ???????????????????????????????
- ???????????????????????????
7Directed Graphs
- ???????????????????????? R ???????????????????????
???? - ???????????????(directed graph) (V,E)
??????????????????? V ????????????????????? E
????? V - ???????? ???? V ?????????????,E(x,y) x
??? y
8Directed Multigraphs
- ???????????????????? ?????????????????????????????
??????????????????????????????????? - ???????????????????????(directed multigraph)
G(V, E, f ) ??????????????????? V ?????????? E
???????????? fE?V?V - ???????? ????., V???????,E???????????? WWW
?????????? ???????????????????????
9Types of Graphs Summary
9
Department of Computer Science, Burapha University
10Graph Terminology
- ??? G ????????????????????????????????????????? E
??? e?E ?????? u,v ??????? ?????????????? - u, v ?????????(adjacent) ?????????????????(neighbo
rs) ????????????(connected) - ???? e ?????????????????(incident)
????????????????? u ?????? v - ???? e ??????(connects) u ??? v ??????
- ??? u ?????? v ???????????(endpoints) ??????? e
10
Department of Computer Science, Burapha University
11Example
Edge incidentwith b,d
e
g
a
b
d
f
AdjacentVertices
c
11
Department of Computer Science, Burapha University
12Degree of a Vertex
- ??? G ?????????????????????, ??? v?V
- ?????(degree) ??? v ???????????? deg(v),
?????????????????????(incident)??????????
(?????????????????????????????????) - ????????????????? 0 ???????? ??????(isolated)
- ????????????????? 1 ???????? pendant
12
Department of Computer Science, Burapha University
13Graph Terminology
- Example ?????????????????????????????? ?????????
pendant ????????????????????????
?????????????????????????????????
Solution ??? f ????????????? ?????? a, d ??? j
???? pendant ???????????????????????????? g ????
deg(g) 5 ???????????????????
?????????(pseudograph) (??????????? ???????????)
13
Department of Computer Science, Burapha University
14Graph Terminology
- ???????????????????????????? ?????????????????????
???????????????????????????????????????????????
Result ??????????? 9 ???? ????????????????????
18 ?????????????????? ????????????????????????????
??????? ??????????????????????????????????????????
????????
14
Department of Computer Science, Burapha University
15Handshaking Theorem
- ??? G ????????????????????? ????????????? V
????????????? E ??????? - Corollary ?????????????????????
??????????????????????????????????????? - ???????? ???? ???????????????? 10 ???
??????????????? 6 ??????????????????????????? - ??? ????????????????????????????????? 6?10 60
??? Handshaking Theorem ???????? 2e 60 ???????
?????????????????? 30 ????
16Directed Degree
- ??? G ???????????????????, v ????????????? G
- ?????????(in-degree) ??? v, deg?(v),
??????????????????????????? v - ????????(out-degree) ??? v, deg?(v),
?????????????????????????? v - ?????(degree) ??? v, deg(v)?deg?(v)deg?(v),
?????????????????????????????????? v - Directed Handshaking Theorem ??? G
????????????????????????????????????? V
????????????????? E ???????
17Directed Degree
- Example ?????????????????????????????? a, b, c,
d ??????????????
deg-(b) 4 deg(b) 2
deg-(a) 1 deg(a) 2
deg-(d) 2 deg(d) 1
deg-(c) 0 deg(c) 2
18Special Graph Structures
- ????????????????????????????????
- Complete graphs Kn
- Cycles Cn
- Wheels Wn
- n-Cubes Qn
- Bipartite graphs
- Complete bipartite graphs Km,n
19Complete Graphs
- ????????????????? n?N, ???????????(complete
graph) ????? n ???, Kn, ????????????????????? n
??? ?????????????????????????????????? ?u,v?V
u?v?u,v?E
K1
K4
K3
K2
K5
K6
????????? Kn ?? ????
20Cycles
- ?????????????? n?3, ????(cycle)????? n ???, Cn,
???????????????????? Vv1,v2, ,vn ???
Ev1,v2,v2,v3,,vn?1,vn,vn,v1
C3
C4
C5
C6
C8
C7
??????????????????????????? Cn?
21Wheels
- ?????????????? n?3, ?????(wheel) Wn,
????????????????????????????????? Cn
?????????????? vhub ?????????? n ???? vhub,v1,
vhub,v2,,vhub,vn
W3
W4
W5
W6
W8
W7
??????????????????????????? Wn?
22n-cubes (hypercubes)
- ????????????????? n?N, ????????(hypercube) Qn
????????????????????????????????????????? Qn-1
?????????????????????????????? ??? Q0 ?? 1 ???
Q0
Q1
Q4
Q2
Q3
?????????????????? 2n ??????????????????????????
????
23Bipartite Graphs
- ????? ???? G(V,E) ???????????????(bipartite)
?????????? V V1 ? V2 ?????? V1nV2? ??? ?e?E
?v1?V1,v2?V2 ev1,v2 - ?????????????????????????????????
- ????????????????????????????????????????????????
- ????????????????????????????????????????????????
V2
V1
24Bipartite Graphs
- Example I ???? C3 ???????????????(bipartite)?????
???
No, ?????????????????????????????
??????????????????????????????????????????????????
?????
Example II ???? C6 ???????????????(bipartite)????
????
Yes, ???????????????????? C6 ?????????????????????
????????
25Complete Bipartite Graphs
- ?????? m,n?N, ??????????????????(complete
bipartite graph) Km,n ?????????????????? V1
m, V2 n, ??? E v1,v2v1?V1 ? v2?V2 - ????????? m ???????????????? ???
- n ??????????????? ???
- ???????????????????????????????
- ???????????????????????
K4,3
Km,n ?? _____ ?????? _____ ????
26Subgraphs
- ????????(subgraph) ??????? G(V,E) ???????
H(W,F) ?????? W?V ??? F?E
K5
??????????? K5
27Graph Unions
- ??????(union) G1?G2 ???????????????? G1(V1, E1)
??? G2(V2,E2) ???????????????? (V1?V2, E1?E2)
?
28Graph Representations Isomorphism
- ??????????(Graph representations)
- Adjacency lists
- Adjacency matrices
- Incidence matrices
- ?????????????????(Graph isomorphism)
- ?????????????????????(isomorphic) ??????????
?????????????????????????????????????
???????????????????????????????
28
Department of Computer Science, Burapha University
29Adjacency Lists
- ?????????? 1 ?????????????? ??????????????????????
?????????????????
b
a
d
c
e
f
29
Department of Computer Science, Burapha University
30Adjacency Lists
30
Department of Computer Science, Burapha University
31Adjacency Matrices
- ???????? Aaij, ?????? aij ???? 1 ??? vi, vj
??????????????? G, ??????? 0 ?????????????????????
???????? - ?????????????????? ???????????????????????????????
1 ???????????????????????????????????????? 1 ????
- ????????? ??????????????(Adjacency matrices)
????????????????????? ????????????????????????
3232
Department of Computer Science, Burapha University
3333
Department of Computer Science, Burapha University
34Incidence Matrices
- ????? ??? G (V, E) ??????????????????????
?????? V n ????????????????????????? G ??????
v1, v2, , vn ??? e1, e2, , em - ??????????????(incidence matrix) ??? G
???????????????????????????????
?????????????????????? 0-1 ???? n?m ???????? 1
?????????? (i, j) ????????? ej ????????? vi, ???
0 ?????????????????????????? - ??????????????? ?????????????? M mij,
- mij 1 ????????? ej ???????????? vi mij
0 ???????????? ej ???????????? vi
35Incidence Matrices
e1 e2 e3 e4 e5 e6
a b c d e
e1
e6
e3
e5
e2
e4
36Incidence Matrices
- Example ????????????????????? M ??????? G
???????????????? a, b, c, d ??????? 1, 2, 3, 4,
5, 6?
Solution
- ????????? ???????????????????????????????????
?????????????????? 1?????? ???????????????????????
??????????????????????? ??????????????????????????
????????? 1 ?????????????
37Graph Isomorphism
- ?????
- ????????????? G1(V1, E1) ??? G2(V2, E2)
??????????(isomorphic) ?????????? ? bijection f
V1?V2 ?????? ?a,b?V1, a ??? b ???????????????
G1 ?????????? f(a) ??? f(b) ??????????????? G2 - f ???????????????????????????????????????????????
?? ????????????????????????????????
38Graph Invariants under Isomorphism
- ????????????????? G1(V1, E1) ?????????????????
G2(V2, E2) ??????????????????????????????????????
??????(invariants), ??????????????????????????????
?????????????????? ?????????????????????? - ?????? V1V2, ??? E1E2
- ?????????????????? n ????????????????????????
- ???????????? g ???????????? ??????????????????????
??????????????????????????????? g - ????????????????????????????????????????????????
???????????????????? ??????????????????????????
????????????????????????????????????????????????
???????????????????????
39Graph Isomorphism-Example
- ???????? ????????????
- ??????????
- ??????? ??????????????????????????
2
2
3
3
1
1
5
4
5
4
40Graph Isomorphism-Example
- ????????? ????? f (1) 1 ????????????????????????
???????????????????????
2
2
1
1
3
3
5
4
5
4
41Graph Isomorphism -Example
- ????????? ????? f (1) 1 ????????????????????????
??????????????????????? ??????????? 3, ?????????
2 ??????????????? f (2) 3
2
2
3
1
1
3
5
4
5
4
42Graph Isomorphism -Example
- ????????? ????? f (1) 1 ????????????????????????
??????????????????????? ??????????? 3, ?????????
2 ??????????????? f (2) 3 ??????????? 5
??????????????? f (3) 5
2
2
3
3
1
1
5
4
5
4
43Graph Isomorphism-Example
- ????????? ????? f (1) 1 ????????????????????????
??????????????????????? ??????????? 3, ?????????
2 ??????????????? f (2) 3 ??????????? 5
??????????????? f (3) 5 ??????????? 2
??????????????? f (4) 2
2
2
3
3
1
1
5
4
4
5
44Graph Isomorphism-Example
- ????????? ????? f (1) 1 ????????????????????????
??????????????????????? ??????????? 3, ?????????
2 ??????????????? f (2) 3 ??????????? 5
??????????????? f (3) 5 ??????????? 2
??????????????? f (4) 2 ??????????? 4
??????????????? f (5) 4
2
2
3
3
1
1
5
4
5
4
45Graph Isomorphism-Example
- ????????? ????? f (1) 1 ????????????????????????
??????????????????????? ??????????? 3, ?????????
2 ??????????????? f (2) 3 ??????????? 5
??????????????? f (3) 5 ??????????? 2
??????????????? f (4) 2 ??????????? 4
??????????????? f (5) 4 ???????????????????????
f (1) 1 ???????????????????????????????????
????????????????????????????????? f
????????????????????????????????????????????
2
2
1
1
3
3
5
4
5
4
?????????????????????
46Isomorphism Example
- ?????????????????????????????????????
?????? Yes, ?????????????????????
??????????????????????????????????????????????????
????????????????????? ??????? b ????????????????
a, c ?????????????????? ????????????????????????
??????? f ????????????????????????????????????????
f(a) e, f(b) a, f(c) b, f(d) c, f(e) d
47Isomorphism Example
- ???????????????????????????? ?????????????????????
?????????????????????? ???????????????????????????
?????????????
d
b
b
a
a
d
c
e
f
e
c
f
?????????????????????
48Isomorphism Example
- ?????????????????????????????????????
Solution No, ????????????????????????
?????????????????????????????????
?????????????????????????? d ????????????????
???????????????????????????????????????????????
49Are These Isomorphic?
- ???????????????????????????? ?????????????????????
?????????????????????? ???????????????????????????
?????????????
- ????????????????????????????
a
b
- ?????????????????????????????
- ????????????????????????? 2 ??????????
(?????????????? 1 ??? ????????????? 3 ???)
d
e
c
50Connectivity
- ????(path)???????????? n ?????? u ???????? v
????????????????????????????????? u ???????? v - ????????????????????????????????(circuit) ??? uv
- ???????????????????????????????
?????????????(connected) ??????????
??????????????????????????????????????????????????
?
50
Department of Computer Science, Burapha University
51Euler Hamilton Paths
- ????????????(Euler circuit) ?????? G
???????????????????????????????????????????? G - ???????????????(Euler path) ?????? G
??????????(????)??????????????????????????????????
??? G - ????????????(Hamilton circuit) ???????????????????
????????????????? G ?????????????????????????? - ???????????????(Hamilton path) ??????????(????)???
?????????????????????????? G ?????????????????????
?????
52Euler circuit Euler path
- ??????? ????????????(Euler path) ??????
??????????????????????????????????????????????????
- ??????? ???????????? (Euler circuit) ?????? ???
?????????????????????????????????????????? - ??????????????????????????????????? ????????????
(Eulerian graph) - ???????? ???? G1 ??????????????( Euler path) a,
c, d, e, b, d, a, b
a
b
c
d
e
52
Department of Computer Science, Burapha University
53Example
- abcdefgehia ???????? ??????????????????????
??????????????????????????????? bd, hd, hc ??? ci - ??????????????? G ???????????????? ?????????????
G ????????????????? - abicbdchdefgehia
53
Department of Computer Science, Burapha University
54Bridges of Königsberg Problem
- ????????????????????????????????(A,B,C,D)
???????????????????????????????????????????
?????????????????????????????????????????
A
D
B
C
????????????
???????????????????????????
55Euler Path Theorems
- Theorem ????????????????????????(connected
multigraph) ???????????????? ??????????
?????????????????????? - Theorem ????????????????????????
??????????????????? (????????????????????)
????????????????????????? 2 ??????????????????????
?????? - ??????????????????????, ??????????????????????????
? - ?????????????????????????????(Euler Circuit
Algorithm) - ?????????????????
- ???????????????????????????????
??????????????????????????????????????????? - ??????????????????????????
- ??????????????????????????????????????????????
56Hamilton circuitHamilton path
- ???????????? (Hamilton path) ???????
???????????????????????????????
?????????????????????????????????????? - ???????????? (Hamilton circuit) ??????? ???
?????????????????????????????????
?????????????????????????????????????? - ???????????? (Hamiltonian graph) ???
????????????????????????
56
Department of Computer Science, Burapha University
57Hamiltonian Graph
????????????????????????????????????????????
58Hamilton path
- ??? G ?????????????????????????????????
- ???? G ????????????????? abcde ???????????????????
????????????? G ????????????????? ??????????? de
2 ????? ?????????????????????????????? G
????????????????? ??????? G ???????????????????
58
Department of Computer Science, Burapha University
59Hamilton circuit
- ??? G ????????????????????????????????? (?)
????????????????????????????????????????????????
(?) ?????????????????????? ???????? G
????????????????
59
Department of Computer Science, Burapha University
60Round-the-World Puzzle
- ?????????????(traverse) ??????????????????????????
? 12 ??????????????????????????????????????????
?????????? 12 ????
?????????????????? 12 ????
61Hamilton Paths
- ???????????????????? ?????????????????????????????
??????? ??????????????????????????? ????
?????????????????????????? ???????????????????????
???????????????? ?????????????????????????????????
?(????)????????
62Hamiltonian Path Theorems
- Diracs theorem ??????? G ??????????????????????
???????(connected, simple)????????????? n?3 ???,
??????????v deg(v)?n/2, ???????? G ?????????????? - Ores corollary ??????? G ???????????????????????
?????? ????????????? n3 ??? ??? deg(u)deg(v)n
????????????? ???u,v ???????????????????????? ,
???? ???? G ??????????????
62
Department of Computer Science, Burapha University
63????????
- ????????????? G ?????????????????????????
????????????????
?????? ????????????? G ??????????????????????? 5
?????????????????????????????? ??????????? 3 ????
3 5/2 ??????? G ?????????????????? ????????????
????? G ????????????????
64Planar Graph
- ??????? ??????????? G ??? ????????????? (planar
graph) ????????????????????????????????? G
????????????????????????????????????????????? - ??????????????????????????????????????????????????
????????????????
64
Department of Computer Science, Burapha University
65Example
- ????????? 3 ???? ??? ???????????3 ????
???????????????????????????????????????????????
???????? ?????? 3 ???? ???????????????????????????
????????????? 3 ???? ?????? ??? ????? ???????????
???????????????????????????????? ????????
???????????????? ?????????????????????????????????
????????????? ????????????????????????????????????
????????????
65
Department of Computer Science, Burapha University
66Degree of a face
- ??????? ??? G ?????????????????
????????????????????????????? G ?????????
?????????????????????????????????????? ????
(faces) - ???????????? (degree of a face) ???????????? d(f)
??????? ????????????????????????? ????
??????????????? ????????????????????????
??????????????????????????????????????????????????
?????????? (the infinite face)
66
Department of Computer Science, Burapha University
67Example
- ?????????????????? 3 ???? ??? f1 , f2 ??? f3
????? f3 ????????????????? d(f1) 3, d(f2)
4, d(f3) 5 ???????? ?????????????????????????
????????? 12 ?????????????? 6 ???? - ?????????????? ???????????????????????????????????
??????????????????????????? ??????????????????????
??????????????????????????????????
???????????????????????????????
????????????????????????????? ????????????????????
?????? G ?????????????? n ???? ??????? f1, f2, ,
fn ?????????????? e ???? ????????
67
Department of Computer Science, Burapha University
68Example
- ????????????????? 10 ???? ??? f1, f2, f3,,f10
?????????????????? 22 ???? ??? - ??????? ??? G ????????????????????????????????????
? ?????????? n ??? ????????? e ???? ????????????
f ???????? n e f 2 - ?????????????????? ??????? 14 22 10 2
68
Department of Computer Science, Burapha University
69Weighted Graphs
- ??????????????? ??? ?????????????????? e ???????
G ????????????????????????????????? - w(e) ????????? ???????? w(e) ??? ??????? (weight)
??????? e ??? ?????????? - ??????? G ???? w(G) ?????? w(G) ???
???????????????????????????????? G
860
2534
191
1855
722
908
957
760
606
834
349
2451
1090
595
69
Department of Computer Science, Burapha University
70Shortest Path Problems
- ???????????????????????????????????????????
?????? ?????????????????????????????????? (The
traveling salemans problem) ?????????????????????
??????????????????????????????????????????????????
?? ?????????????????????????????????????
???????????????????????????????????????????????? - ??????? ?????????????????????????????????????????
?????????????? ???????????????????????????????? 2
?????????????????????????????????????????
??????????????????????????????????????????????????
??????????? ?????????????????????????
????????????????????????????????? ???
?????????????????????????????????????????????????
???????????????????????????????????????
??????????????????????????????????????
70
Department of Computer Science, Burapha University
71Shortest Path Problems
- ??????????????????????????????????????????????????
????????? 2 ?????????????? ???????????????????????
???????????????????????????????????
??????????????????????????????????????
??????????????????????????????????
???????????????????????????????????????? ???
?????????? ???? ??????? (Dijkstra, Edsger Wybe) - Dijkstras algorithm ?????????????????????????????
?????????????????????? a ?????? z
?????????????????
71
Department of Computer Science, Burapha University
72Dijkstras algorithm
- procedure ??????? (G ????????????????????????????
???????????????? ?????????????????????????????) - G ????? a v0, v1, , vn z ?????????? w(vi,
vj) 8 ??? vivj ????????????? G - begin
- for i 1 to n do
- L(vi) 8
- L(a) 0
- S Ø
- ??????????????????? ????????? a ???? 0
????????????????? ???? 8 ??? SØ
72
Department of Computer Science, Burapha University
73Dijkstras algorithm
- while z ? S
- begin
- u ??????????????? S ??? L(u) ????????????
- S S ? u
- for v ? S
- if L(u)w(u,v)ltL(v) then L(v)L(u)w(u,v)
- ?????????? S ???????????????????? ???
????????????????????????????????? S - end L(z) ?????????????????????????? a ??????
z - end
73
Department of Computer Science, Burapha University
74Example
- ??????????????????????????? a ???????? z
??????????????????
?????????????? a ???? 0 ??? ?????????????????? 8
??????? L0(a) 0 ?????? L0(b), L0(c), L0(d),
L0(e) ??? L0(z)???? 8 ??? S0 Ø
74
Department of Computer Science, Burapha University
75Example
- L1(b) min L0(b), L0(a) w(a, b) min 8, 0
4 4 - L1(c) min L0(c), L0(a) w(a, c) min 8, 0
2 2 - ?????? L1(d), L1(e) ??? L1(z) ???? 8
- ??????? S2 a, c
???????? a ????????????????????????? ?????????????
S1 ??????? S1 a ??????????????? ??????????
?????????????? a ???????
75
Department of Computer Science, Burapha University
76Example
- L2(b) min L1(b), L1(c) w(c, b) min 4, 2
1 3 - L2(d) min L0(d), L1(c) w(c, d) min 8, 2
8 10 - L2(e) min L0(e), L1(c) w(c, e) min 8, 2
10 12 - ?????? L2(z) ???? 8
- ??????? S3 a, c, b
- ???????????????????????????????????? c
76
Department of Computer Science, Burapha University
77Example
- L3(d) min L2(d), L2(b) w(b, d) min 10, 3
5 8 - ?????? L3(z) ???? 8
- ??????? S4 a, c, b, d
- ???????????????????????????????????? b
77
Department of Computer Science, Burapha University
78Example
- L4(e) min L2(e), L3(d) w(d, e) min 12, 8
2 10 - L4(z) min L0(z), L3(d) w(d, z) min 8, 8
6 14 - ??????? S4 a, c, b, d, e
78
Department of Computer Science, Burapha University
79Example
- L5(z) min L4(z), L4(e) w(e, z) min 14,
10 3 13 - ??????? S5 a, c, b, d, e, z
- ?????????????????????????????? a ???????? z ???
acbdez - ??????????????????? 13 ?????
79
Department of Computer Science, Burapha University
80Graph Coloring
- ????????????(graph coloring) ????????????????????
??????? ??????????????????????????????????????????
????????????????? ????????????? - Chromatic number ?????????????????????????????????
????????????????????? - ???? C5 ??????? Chromatic number ???? 3
- ???? C4 ,C6 ??????? Chromatic number ???? 2
- ???? ???? Cycle Cn ??????? Chromatic number ????
3 ????? n ???????????? ?????????? Chromatic
number ???? 2 ????? n ????????????
C6
C5
C4
80
Department of Computer Science, Burapha University
81Example
- ????????????????????? Kn ???????????????????? n
?? ???????????????????????? K m, n ?????
Chromatic number??? 2
81
Department of Computer Science, Burapha University
82The 4-color theorem
- Chromatic number ?????????(planar graph) 4
- The Four color theorem chromatic number
????????????????????????????????? 4 - Example ???? G1 ?? chromatic number 3, ???? G2
?? chromatic number 4
G1
G2
82
Department of Computer Science, Burapha University
83Application of Graph Coloring
- ????????????????????????????
- ??????????????????????????????????????????????????
?????????????????????? - ???????????? ?????????????????????????????????????
???????????????????????? 2 ???????????????????????
??? - ???????????????????????????????????????????????
83
Department of Computer Science, Burapha University
84Example
- ???????????????????????????????????????????????
???????????????????????????????????? 7 ????
(????????????????? 1, 2,,7) ?????????????????????
???????????????????????? ?????????????????????????
?????????????????????????????????? - 1-2, 1-3, 1-4, 1-7
- 2-3,2-4,2-5,2-7
- 3-4,3-6,3-7
- 4-5,4-6
- 5-6,5-7
- 6-7
84
Department of Computer Science, Burapha University