Neural Circuit of Cerebellar Cortex - PowerPoint PPT Presentation

About This Presentation
Title:

Neural Circuit of Cerebellar Cortex

Description:

pp2a no no ltd no glu ampa-r vgcc mglur gq plc pkc dag ip3 ca2+ store ip3r pla2 mapk mek raf aa ... – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 46
Provided by: doi90
Category:

less

Transcript and Presenter's Notes

Title: Neural Circuit of Cerebellar Cortex


1
Neural Circuit of Cerebellar Cortex
2
???????????????
CF
PF
Glu
NO
CRF
AMPA-R
VGCC
mGluR
CRHR
PLC
GC
Gq
Lyn
cGMP
Ca2
PKC
PKG
DAG
IP3
Raf
G-substrate
Positive Feedback Loop
IP3R
AA
MEK
Ca2 Store
PP2A
PLA2
MAPK
3
?????????
???? PF
  1. ??????????????
  2. PF??????CF?????
  3. PF????????????CF?????????????????????(?????LTD)

????? ??
???? CF
4
??LTD???????
????(PF)? ????(CF)? ?????????
????
????
?????Ca2?
PKC
??????????? AMPA??????
????
5
??????????????
  1. ????(PF)?????(CF)???????Ca2??????
  2. PF???????CF???????(?????????????????? )
  3. Ca2????????LTD??????

6
Motivations of Systems Biology Simulation
  • Most cerebellar learning theories (including
    Itos) require PF-CF temporal window for
    plasticity (STDP).
  • But, some experiments (photolysis, strong PF
    stimulation) are against this temporal window.
    Then, biological significance of LTD?
  • How altered synaptic efficacy can be maintained
    in medium term (several tens of minutes)?

7
PF?CF????Ca2??
Wang et al., (2000) Nat Neurosci
8
Temporal Window of PF and CF Inputs for Ca2
Firing and LTD
Wang et al., (2000) Nat Neurosci 3, 1266-1273
9
IP3??????
  1. IP3R?????IP3?Ca2??????
  2. Ca2?????????

Open Probability
Bezprozvanny et al., Nature(1991)
10
A New Model of IP3R based on Adkins and Taylor
Four-States Model
11
Ca2 ??????????
PF
Glu
CF
mGluR
AMPA-R
VGCC
PLC
DAG
Gq
Ca2
IP3
IP3R
Ca2Store
12
CF??
PF
Glu
CF
mGluR
AMPA-R
VGCC
VGCC
PLC
DAG
Gq
IP3
Ca2
Ca2
IP3R
Ca2Store
13
PF?? AMPA-R??
PF
CF
Glu
mGluR
AMPA-R
VGCC
PLC
DAG
Gq
IP3
Ca2
IP3R
Ca2Store
14
PF?? mGluR??
PF
CF
Glu
AMPA-R
VGCC
mGluR
PLC
Gq
Ca2
IP3R
Ca2Store
15
PF?IP3?????CF???
PF
CF
AMPA-R??
mGluR??
Ca2
?
Positive Feedback Loop
IP3
IP3R
Ca2Store
16
?PF?CF??????
PF
CF
AMPA-R??
mGluR??
?
Ca2
Ca2
Positive Feedback Loop
IP3
IP3R
Ca2Store
17
?PF?CF??????
PF
CF
AMPA-R??
mGluR??
Ca2
?
Positive Feedback Loop
IP3
IP3R
Ca2Store
18
?PF?CF????
PF
CF
AMPA-R??
mGluR??
?
Ca2
Positive Feedback Loop
IP3
IP3R
Ca2Store
19
?PF?CF????
PF
CF
AMPA-R??
mGluR??
?
Ca2
Positive Feedback Loop
IP3R
Ca2Store
20
????????????
PF
Glu
CF
mGluR
AMPA-R
VGCC
PLC
DAG
Gq
IP3
Ca2
IP3 enzyme
Leak
IP3R
Ca2Buffer Proteins
Ca2Store
Leak
Ca2pump
Ca2pump
Na/Ca2 exchanger
21
Signal Transduction Pathways of Supralinear Ca2
Increase
22
Simulation of Supralinear Ca2 Increase
  • GENESIS simulator with Kinetikit interface
    developed by Upi Bhalla
  • Ordinary differential equations for
    molecule-molecule and enzymatic reactions
  • 49 variables and 95 parameters
  • 20 initial concentrations with 3 assumed
  • 25 dissociation constants and Michaelis constants
    with 3 assumed
  • 9 maximum enzyme velocities with 3 assumed

23
?Glu?mGluR?Gq
Glu
mGluR
Gq
24
???????
?????
(1)???????
Kf
AB AB
Kb
dA/dt -KfAB KbAB A AB A all
const.
????KdKb/Kf ???????????? ???t 1/(Kf
Kb)??????????
25
???????
?????
(1)???????
Kf
AB AB
Kb
(2)????(Michaelis-Menten)
Kf
Kcat
ES ES EP
Kb
EEnzyme, SSubstrate, PProduct
26
(No Transcript)
27
Supralinear Ca2 Increase is dependent on PF and
CF Timing
28
Temporal Window of Ca2 FiringCoincidence
Detection of PF and CF
29
Ca2 Dynamics explains Three Different Forms of
LTD
30
Time Delay by IP3 Slow Increase and Coincidence
Detection by IP3R
31
??????LTD??
32
???????????
????
Glutamate
NO
membrane
Ica
Positive
feedback
loop
33
???????????
????
????
AMPA R
membrane
Positive
feedback
loop
34
???????????????
????
????
AMPA R
AMPA R
Na/Ca
Na/Ca
membrane
Ica
Ica
2


Ca
Raf
PKC
AA
AA
MEK
MEK
MAP kinase
PLA2
35
????(LTD)???
0.5
0.4
????
????
Non-Phosphorylated AMPA Receptors
0.3
AMPA receptor (mM)
0.2
Phosphorylated AMPA Receptors
0.1
Stimulus 1Hz for 5min
0
0
10
20
30
40
50
60
70
80
90
100
Time (min)
36
AMPA-R?????????
0.15
0.10
PKC concentration (mM)
0.05
0
0
10
20
30
40
50
60
70
80
90
100
Time (min)
PKC
AMPA-R
AMPA-R
PP2A
P
37
????Ca2?DAG?PKC????
0.15
0.10
PKC concentration (mM)
0.05
0
0
10
20
30
40
50
60
70
80
90
100
Time (min)
DAG
PKC
AMPA-R
AMPA-R
PP2A
P
38
???AA?PKC??????
0.15
0.10
PKC concentration (mM)
0.05
0
0
10
20
30
40
50
60
70
80
90
100
Time (min)
DAG
AA
PKC
AMPA-R
AMPA-R
PP2A
P
39
PP2A??????????
0.15
0.10
PKC concentration (mM)
0.05
0
0
10
20
30
40
50
60
70
80
90
100
Time (min)
DAG
AA
PKC
AMPA-R
AMPA-R
PP2A
P
40
LTD??????Ca2???
3.0
PF CF PF alone CF alone
2.0
Active PP2A (mM)
1.0
0
0
20
40
60
80
100
Time (min)
41
?????????
Simulation data
Deleted pathways
0.3
control
0.2
AMPA phosphorylation (mM)
0.1
0
0
10
20
30
40
50
60
70
80
90
100
Time (min)
42
PKC?????
Simulation data
Deleted pathways
0.3
control
0.2
AMPA phosphorylation (mM)
0.1
0
0
10
20
30
40
50
60
70
80
90
100
Time (min)
PKC Block
43
NO?LTD???
Simulation data
Deleted pathways
0.3
control
0.2
AMPA phosphorylation (mM)
0.1
0
0
10
20
30
40
50
60
70
80
90
100
Time (min)
NO Block
44
Ca2?????????
Simulation data
Deleted pathways
0.3
control
0.2
AMPA phosphorylation (mM)
0.1
0
0
10
20
30
40
50
60
70
80
90
100
Time (min)
Chelate Ca2
45
MAPK??????LTD?????
Simulation data
Deleted pathways
0.3
control
0.2
AMPA phosphorylation (mM)
0.1
0
0
10
20
30
40
50
60
70
80
90
100
Time (min)
Block MAP kinase
Write a Comment
User Comments (0)
About PowerShow.com