Robot Vision with CNNs: a Practical Example - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Robot Vision with CNNs: a Practical Example

Description:

Barcelona, 19/2/03 Robot Vision with CNNs: a Practical Example M. Balsi Dep. of Electronic Engineering La Sapienza Univ. of Rome, Italy P. Vitullo – PowerPoint PPT presentation

Number of Views:164
Avg rating:3.0/5.0
Slides: 26
Provided by: MarcoB151
Category:

less

Transcript and Presenter's Notes

Title: Robot Vision with CNNs: a Practical Example


1
Robot Vision with CNNsa Practical Example
Barcelona, 19/2/03
M. Balsi Dep. of Electronic Engineering La
Sapienza Univ. of Rome, Italy
  • P. Vitullo
  • P. Campolucci
  • G. Apicella
  • L. Pompeo
  • D. Bellachioma
  • S. Graziani

X. VilasísCardona S. Luengo J. Solsona R. Funosas
A. Maraschini A. Aznar V. Giovenale P. Giangrossi
2
Framework of this work
  • completely autonomous robot
  • simple (cheap) hardware
  • vision-based guidance
  • short term line following
  • longer term navigation in a real environment

3
Architecture
  • Cellular Neural Networks to handle all the image
    processing
  • Fuzzy-rule-based navigation

4
Cellular Neural Networks
  • Fully parallel analog vision chips
  • Capable of real-time nonlinear image processing
    and feature detection
  • Algorithmically programmable to implement complex
    operations
  • On-board image acquisition (focal-plane
    processing)

5
Cellular Neural Networks
  • Recurrent Neural (?) Network
  • Locally connected ? VLSI-friendly
  • Space-invariant synapses (cloning templates)
  • small number of parameters explicit design
  • Continuous variables analog computing
    (discrete-time model for digital)

6
Topology
Locally connected ? VLSI
Space-invariant synapses
7
Discretetime model
  • Binary state variable
  • Analog or binary input depending on implementation

8
Application
  • Input ports analog arrays u, x(0)
  • Output port binary array x(?)
  • Analog instruction A,B,I (cloning template)
  • Feature detection (nonlinear image filtering)

9
CNN Universal Machine
  • Local memory
  • Global control (broadcasting cloning templates
    and memory transfer commands)
  • Analogic computing stored-program analog/logic
    algorithms

10
Task line following
  • The robot is to follow a maze of straight lines
    crossing at approximately right angles
  • Functions required by vision module
  • Acquiring image, cleaning, thinning lines
  • Measuring orientation/displacement of lines

11
Image processing algorithm
  • Image acquisition
  • Binarization
  • Line thinning

12
Image processing algorithm (ctd.)
  • Directional line filtering
  • Projection

13
Fuzzy control
14
Simulation
15
el cochecito(Barcelona)
16
Visibilia (Rome)
FPGA-based CNN emulator Celoxica RC-100 board
Xilinx Spartan II 200Kgates
PAL B/W CAMERA
PS/2 mouse port
STEPPER MOTOR CONTROLLER
SERVO MOTOR (steering)
microcontroller Jackrabbit
BL1810
Parallel port E
STEPPER MOTOR (advancing)
Rabbit2000 microcontroller
PIC 16F84
LCD
Parallel port A
Serial port D
17
(No Transcript)
18
Celoxica RC-100
19
Jackrabbit BL1810
20
driving
start
Y
hor
store left avail.
vert
hor
N
N
Y
timer0
Y
hor
Y
timergt10s
N
N
Y
follow vert
turn left if avail. else right
diag (L/R)
Y
follow diag
normal driving
N
crossing
21
Continuation of the work
  • more realistic tasks
  • obstacle avoidance
  • navigation in a real-life environment

22
Obstacle avoidance
  • using other sensors together with vision, e.g.
    ultrasound
  • monocular range evaluation
  • local path-finding strategies

23
Hybrid (topological/metric) navigation
24
door recognition
25
Robot Vision with CNNsa Practical Example
Barcelona, 19/2/03
M. Balsi Dep. of Electronic Engineering La
Sapienza Univ. of Rome, Italy balsi_at_uniroma1.it
Write a Comment
User Comments (0)
About PowerShow.com