Title: Chapter 7. Inhalation Anesthetics
1Chapter 7. Inhalation Anesthetics
2Inhalation anesthetics
- Nitrous oxide, Chloroform and Ether.
- Ethyl chloride, ethylene, cyclopropane
- Methoxyflurane and Enflurane
-
- Nitrous oxide, Halothane, Isoflurane, Desflurane,
and Sevoflurane.
3Inhalation anesthetics
- The course of general anesthesia
- 1) Induction
- 2) Maintenance
- 3) Emergence
- Useful in the induction of pediatric patients
- Adults prefer rapid induction with intravenous
agents. -
4Inhalation anesthetics
- Pharmacokinetics (how a body affects a drug)
- Relationship between a drugs dose, tissue
concentration, and elapsed time - Pharmacodynamics (how a drug affects a body)
- The study of drug action, including toxic
responses - MAC (Minimum alveolar concentration)
- Clinical pharmacology of individual agents
- Nitrous oxide, Halothane, Isoflurane,
Desflurane, Sevoflurane -
5Pharmacokinetics
- Mechanism of action of inhalation anesthetics
remains unknown - Depends on attainment of a therapeutic tissue
concentration in the central nervous system - There many steps, between the administration of
an anesthetic from a vaporizer and its deposition
in the brain
6(No Transcript)
7Pharmacokinetics Factors affecting inspiratory
concentration(FI )
-
- Fresh gas flow rate (FGF rate)
- Volume of the breathing system
- (breathing circuit volume)
- Any absorption by the machine or breathing
circuit (circuit
absorption)
8Pharmacokinetics Factors affecting alveolar
concentration(FA )
- Uptake
- Ventilation
- Concentration
9Pharmacokinetics Factors affecting alveolar
concentration(FA )
- Uptake
- 1) FA/FI lt1.0
-
- 2) Uptake ? ? Alveolar concentration ? ? FA/FI
? -
- 3) Gas concentration ? Partial pressure
-
- Alveolar partial pressure
- ? Anesthetic partial pressure in blood
- ? Brain tissue concentration
- 4) Uptake of Anesthetic agent ? ? Induction ?
-
10Pharmacokinetics Factors affecting alveolar
concentration(FA )
- Anesthetic uptake factors
-
- 1) Solubility in the blood
- 2) Alveolar blood flow
- 3) Difference in partial pressure between
alveolar gas
- and venous blood
-
11Pharmacokinetics Factors affecting alveolar
concentration(FA )
- Solubility in the blood
- 1) Solubility Insoluble agents(N2O) lt
soluble agents(halothane) - FA Insoluble agents(N2O) gt soluble
agents(halothane) - Induction speed Insoluble gt soluble
agents -
- 2) Partition coefficients(?)
- Relative solubility of an anesthetic
in air, blood, and tissues -
- 3) Blood/gas partition coefficient? ?
Solubility in Blood ? ? - Uptake ? ? Alveolar partial pr??
induction speed ?
12Pharmacokinetics Factors affecting alveolar
concentration(FA )
- Alveolar blood flow
-
- 1) In the absence of pulmonary shunting ABF
CO - CO? ? Uptake ? ? Alveolar partial pr??
induction speed ? -
- 2) Insoluble agent
- Alveolar blood flow ?? ??
-
- 3) Soluble agent
- Low CO ? Alveolar concentration ??
overdosage
13Pharmacokinetics Factors affecting alveolar
concentration(FA )
- Difference in partial pressure between alveolar
gas and venous blood - 1) No tissue uptake ? Alveolar to venous
partial pr difference 0 -
- 2) Factors affecting tissue uptake
- Tissue solubility of the agent(
tissue/blood partition coefficient) - Tissue blood flow
- Difference in partial pressure between
arterial blood and the tissue -
14Pharmacokinetics Factors affecting alveolar
concentration(FA )
15Pharmacokinetics Factors affecting alveolar
concentration(FA )
- 4 group of tissue by solubility and blood flow
-
- 1) Vessel-rich group
- ex) brain, heart, liver, kidney,
endocrine organ -
- 2) Muscle group
- ex) skin, muscle
-
- 3) Fat group
-
- 4) Vessel-poor group
- ex) bone, ligament, teeth, hair,
cartilage -
-
16Pharmacokinetics Factors affecting alveolar
concentration(FA )
17Pharmacokinetics Factors affecting alveolar
concentration(FA )
18Pharmacokinetics Factors affecting alveolar
concentration(FA )
- Ventilation
-
- Constantly replacing anesthetics taken up by
- pul bloodstream ? FA/FI ? for soluble agent
-
-
-
19Pharmacokinetics Factors affecting alveolar
concentration(FA )
- Concentration
-
- 1) Concentration effect
- Concentrating effect
- Augmented inflow effect
-
- 2) Second gas effect
-
20Pharmacokinetics Factors affecting alveolar
concentration(FA )
- (Anesthetic gas 50 uptake)
- 10/9011
40/6066 -
- ? Concentrating effect
Gas 40
O2 20
Anesthetic gas 20
O2 80
Gas 10
O2 80
Anesthetic gas 80
O2 20
?
?
21Pharmacokinetics Factors affecting alveolar
concentration(FA )
-
-
- 1 of
second gas 1 of
second gas (1.7)
-
1 of second gas -
-
-
-
-
0.4 of second gas -
-
O2 19
N2O 80
O2 19(31.7)
N2O 40(66.7)
O2 19
N20 40
O2 7.6
N2O 32
22Pharmacokinetics Factors affecting alveolar
concentration(FA )
- Alveolar partial pr gt Arterial partial pr
- ?
Alveolar-arterial difference - 1) Venous admixture
-
- 2) Alveolar dead space
-
- 3) Nonuniform alveolar gas distribution
-
- 4) Ventilation/perfusion mismatch
- (ex atelectasis,
emphysema, neumonia) -
-
-
23Pharmacokinetics Factors affecting alveolar
concentration(FA )
- Recovery from anesthesia
- - Anesthetic concentration in brain
tissue ? - Anesthetics can be eliminated by
- 1) biotransformation
- 2) transcutaneous
-
- 3) exhalation
-
24Pharmacokinetics Factors affecting elimination
- Induction? ????? ???? Recovery? ??
-
- Rebreathing
- High Fresh gas flows
- Low Anesthetic-circuit volume
- Low absorption by the Anesthetic-circuit
- Decreased Solubility
- High CBF(Cerebral Blood Flow)
- - Increased Ventilation
25Pharmacokinetics Factors affecting elimination
- Diffusion hypoxia
-
- 1) Directly affect oxygenation by
displacing O2 - 2) diluting alveolar CO2 ? respiratory
drive ? -
- ? prevent 100 O2 510min
26PharmacodynamicsTheories of anesthetic action
- Pharmacodynamics
- the study of drug action, including toxic
responses - how a drug affects a body
- General anesthesia
- reversible loss of consciousness
- analgesia of the entire body
- amnesia
- muscle relaxation
-
- General anesthesia agent
- inert elements ( ex xenon )
- simple inorganic compounds ( ex nitrous
oxide) - halogenated hydrocarbons ( ex halothane )
- complex organic structures (ex
barbiturate )
27PharmacodynamicsTheories of anesthetic action
-
- Agent-specific theory
-
- Unitary hypothesis
- Critical volume hypothesis
- Fluidization theory of anesthesia
- Lat phase separation theory
28PharmacodynamicsMAC(Minimum alveolar
concentration)
- Alveolar concentration that prevents movement in
50 of patients in response to a standardized
stimulation - MAC is useful measure
- brain partial pressure ??
- agents ??potency ??
- experimental evaluation? ?? ??
-
- The MAC value for different anesthetics are
roughly additive - The same MAC ? CNS depression
- ? Myocardial
depression -
29PharmacodynamicsMAC(Minimum alveolar
concentration)
- Point on dose-response curve
- ? ED50,( median
effective dose) - 1.3 MAC of any of the volatile anesthetics
prevent movement in about 95 patients surgical
incision - ? ED95
-
- MAC Awake 0.3 0.4 MAC
-
- One of the most striking is the 6 decrease in
MAC per decade of age, regardless of volatile
anesthetic - Unaffected by species, sex, or duration of
anesthesia -
30PharmacodynamicsMAC(Minimum alveolar
concentration)
31Nitrous oxidePhysical properties
- ???? ??? ??? inorganic anesthetic gas
- ??, ??
- ??? ?, ??? ? ?? O2 ??? ??? ?? ??
- ??, ????? gas??? ??, ?? ????? ????? ??? ??
- ??? ??
32Nitrous oxideEffect on organ system-
Cardiovascular
- In vitro- stimulate the sympathetic nervous
system in vitro, direct depression of
myocardial contractility - In vivo- Stimulation of catecholamine
- ? ABP, CO, HR Unchanged or
slightly? - N2O? Myocardial depression? unmasked ?? ??
- Coronary artery diseases
- Severe hypovolemia
- ? BP ? ? myocardial ischemia
- Constriction pulmonary vascular smooth muscle
- ? pulmonary
vascular resistance ? - ? Rt.
Ventricular end-diastolic pr. ? - Endogenous catecholamine level ?
- ? epinephrine
induced arrhythmia ?
33Nitrous oxideEffect on organ system- Respiratory
- CNS stimulation, pulmonary stretch receptor
activation ? respiratory rate?(tachypnea) tidal
volume? - net effect -gt minimal change in minute
ventilation - and resting
arterial CO2 level - Hypoxic drive?
-
34Nitrous oxideEffect on organ system- Cerebral
- Cerebral blood flow Cerebral blood volume?
- ? Intracranial
pressure mild? - CMOR2(Cerebral oxygen consumption)?
- Levels of nitrous oxide below MAC provide
analgesia in dental surgery and other minor
procedures -
35Nitrous oxideEffect on organ system- Etc.
- Neuromuscular
- not provide significant muscle relaxation
- not a triggering agent of malignant
hyperthermia - Renal
- Renal vascular resistance ? ? renal blood
flow ? - glomerular filtration rate(GFR)
urinary output ? - Hepatic
- Hepatic blood flow ?
-
- Gastrointestinal
- Activation of the chemoreceptor trigger
zone and the vomiting center in the medulla - ?Postoperative
nausea vomiting
36Nitrous oxide Biotransformation toxicity
- Eliminated by exhalation almost
- diffuses out
through skin small amount - biotransformation
than less 0.01 - Vit B12??? cobalt ??? ???? ??
- ? Vit B12 dependent enzyme ?
- ?? Myelin??? ??? methionine synthetase
? - ? DNA??? ??? thymidylate
synthetase ? - ? Prolonged exposure of anesthetic level
- ?? Bone marrow depression(ex megaloblastic
anemia ) - ? Neurological deficiencies
- (experipheral neuropathies and
pernicious anemia) -
- Teratogenic effect
-
- Polymorphonuclear leukocytes ?chemotaxis?
motility? ?? ? immunological response change
37Nitrous oxide Contraindication
- Air embolism
- Pneumothorax
- Acute intestinal obstruction
- Intracranial air ( ex dural closure or
pneumoencephalus? ?? tension pneumocephalus) - Pul. air cyst
- Intraocular air bubble
- Tympanic membrane grafting
- Pulmonary HTN patient
-
38Nitrous oxide Drug interaction
- MAC 105 vol
- ? combination with the more potent
volatile agent - Neuromuscular blockade?
- (but effect N2Olt volatile agents)
- Requirements of other agents?
- Second gas effect
39HalothanePhysical properties
- Halogenated alkane
- Nonexplosive
- Nonflammable
- Least expensive volatile anesthetics
-
40HalothaneEffect on organ system- Cardiovascular
- Dose-dependent reduction of arterial blood
pressure - ? Myocardial
depression (2.0MAC BP 50?) - Coronary artery vasodilator
- But Systemic arterial pressure ? ?
coronary blood flow ? - Hypotension ? Vagal stimulation ?, HR?
- But this reflex?, sinoatrial node
conduction slowing -
?Junctional rhythm and bradycardia - In infant HR? myocardial contratility?? CO?
- Sensitize the heart to the arrhythmogenic effects
to epinephrine - epinephrine 1.5µg/kg ?? ????
41HalothaneEffect on organ system- Respiratory
- Rapid, shallow breathing Not enough to counter
TV? - ? alveolar ventilation?, resting PaCO2?
-
- Cause of ventilatory effect
- central mechanism (medullary depression)
- peripheral mechanism (intercostal muscle
dysfunction) - ? pre-existing lung disease
- ? surgical stimulation
- Hypoxic drive?
-
- A potent bronchodilators
- (? Airway reflex ?, bronchial smooth
muscle ?? ) -
- Mucociliary function ?
- ? postoperative
hypoxia atelectasis?? -
42HalothaneEffect on organ system- Cerebral
- Cerebral vessels dilating
- ? cerebral vascular resistance? ,
CBF ? - Autoregulation (Arterial blood pressure? ????
CBF? ???? ??) ? Intracranial pressure? -
- Prevent Hyperventilation
-
43HalothaneEffect on organ system- Etc.
- Neuromuscular
- Skeletal muscle relaxation
- Non-depolarizing neuromuscular-blocking
agents (NMBA) effect? - Malignant hyperthermia
- Renal
- Renal blood flow, GFR(glomelular filtration
rate), urinary output ? - (? Arterial blood pressure cardiac
output ?) -
- GFR? lt Renal blood flow? ? Filtration
fraction? - Prevent Preoperative hydration
- Hepatic
- CO? ? hepatic blood flow?
- Hepatic artery vasospasm
- The metabolism and clearance of Fentanyl,
phenytoin, verapamil?
44Halothane Biotransformation toxicity
- Be oxidized in the liver by a cytochrome P450
(2EI) -
?
trifluoroacetic acid -
- Inhibited by pretreatment with
disulfiram - viral hepatitis, impaired hepatic perfusion,
hepatocyte hypoxia, sepsis, hemolysis, benign
postoperative intrahepatic cholestasis, drug
induced hepatitis ? postoperative hepatic
dysfunction - Halothane hepatitis is extremely rare (1/35000 )
-
- - Hepatitis is increased risk at
- halothane ??? ??
???? ?? ?? ?? - ??? ??? ??
- Halothane ???
??? ???? ?? ?? - ????? halothane
??? ?? Hx()? ??
45Halothane Contraindication
- Halothane? ??? ???? ?? ?? ? ??? ???? ? ?? ??? ??
? - Intracranial mass lesion ? Intracranial
hypertension - Hypovolemic pt.
- Severe cardiac disease ( ex aortic stenosis )
- Epinephrine? ???? ??? ??
- Pheochromocytoma
46Halothane Drug interaction
- ß- adrenergic blocking agent (propranolol),
- Ca channel blocking agent (verapamil)
-
? Myocardial depression? - Tricyclic antidepressants, MAO inhibitor
- ? fluctuations in blood
pressure arrhythmias - ( but not
absolute contraindication) - Aminophylline ? Severe ventricular arrhythmias
47Isoflurane Physical properties
- Nonflammable volatile anesthetic
- Pungent ethereal oder
- Chemical isomer of enflurane
- but different physiochemical property
-
-
48Isoflurane Effects on organ system-
Cardiovascular
- Minimal cardiac depression
- but carotid baroreflex ? HR??
CO?? - ß-adrenergic stimulation
- ? skeletal muscle blood flow?
- systemic vascular
resistance? - arterial blood pressure ?
- Isoflurane??? ??? ??
- ? HR ?, arterial blood
pressure?, - norepinephrine? plasma
level? - Dilates coronary arteries
49Isoflurane Effects on organ system- Respiratory
- Respiratory depression, Tachypnea ( less
pronounced)
- ? minute ventilation?(
more pronounced) - 0.1MAC?? ??? Isoflurane? hypoxia?
- hypercapnia? ?? ???? ?? ??? ????
- Good bronchodilator
50Isoflurane Effects on organ system- Cerebral
- gt1.0 MAC CBF intracranial pressure?
-
- but Isoflurane lt Halothane
- Reversed by hyperventilation
- Cerebral metabolic oxygen requirement?
- 2.0 MAC
- ? electrically silent
electroencephalogram(EEG) -
- EEG suppression
- ? cerebral ischemia?
brain protection
51Isoflurane Effects on organ system- Etc.
- Neuromuscular
- Relax skeletal muscles
- Renal
- Renal blood flow ?, glomerular filtration rate
? , - urinary output ?
- Hepatic
- Total hepatic flow ?
- Hepatic oxygen supply better maintained than
with Halothane -
52Isoflurane Biotransformation toxicity
- Trifluoroacetic acid? ??
- Serum fluoride fluid levels may rise
- But no nephrotoxicity
53Isoflurane Contraindication
- No unique contraindication
54Isoflurane Drug interaction
- Safe dose of Epinephrine up to 4.5 µg/kg
- NMBAs effect?
55Desflurane Physical properties
- Isoflurane? ?? ??? ??
- High vapor pressure ? special vapor
- Low solubility in blood and body tissues
- ? Ultrashort duration
- ? Very rapid wash in and wash out
of anesthetic - Moderate potency
56Desflurane Effects on organ system-
Cardiovascular
- Similar to isoflurane
- Dose?? systemic vascular resistance? ? arterial
blood pressure ? - CO unchanged or mild?(12 MAC)
- Heart rate, central venous pressure, pulmonary
artery pressure moderate? - Cardiovascular disease ? desflurane concentration
rapid?? heart rate, BP, catecholamine level
worrisome? - Attenuated by fentanyl, esmolol, clonidine
- coronary blood flow unchanged
57Desflurane Effects on organ system- Respiratory
- TV ? RR ?
- Alveolar ventilation ? ? resting PaCO 2 ?
- Ventilatory response ?
- Pungency and airway irritation during induction
- ? salivation, breath-holding, coughing,
laryngospasm -
58Desflurane Effects on organ system- Cerebral
- Similar to Isoflurane
- Directly vasodilates the cerebral vasculature
-
? CBF ?, ICP? - Cerebral metabolic rate of oxygen(CMRO2) ?
- ? cerebral
vasoconstriction CBF? - Cerebral oxygen consumption ?
- ?During periods of desflurane-induced
hypotension, - CBF is adequate to maintain
aerobic metabolism
59Desflurane Effects on organ system- Etc.
- Neuromuscular
- dose-dependent of TOF ?? ???????
- Renal
- No evidence of any nephrotoxic effects
- Hepatic
- No evidence of hepatic injury
60Desflurane Biotransformation toxicity
- Minimal metabolism
- Insignificant percutaneous loss
- CO poisoning(by carbon dioxide absorbent)
- disposing of dried out
absorbent or use of calcium hydroxide ? minimize
the risk -
61Desflurane Contraindication
- Severe hypovolemia
- Malignant hyperthermia
- Intracranial hypertension
62Desflurane Drug interaction
- Potentiates nondepolarizing neuromuscular
blocking agents - Safe dose of Epinephrine Up to 45 µg/kg
- Associated with delirium in some pediatric
patients
63Sevoflurane Physical properties
- Nonpungency rapid increase in alveolar
anesthetic concentration - ? Smooth rapid
inhalation induction - Rapid emergence than Isoflurane
- Faster emergence
- ? Greater incidence of delirium in some
pediatric patients - treated with 1.02.0 µg/kg
of fentanyl
64Sevoflurane Effects on organ system-
Cardiovascular respiratory
- Cardiovascular
- Depresses myocardial contractility.
- Systemic vascular resistance arterial
blood pr. ? - Prolong the QT interval
- Respiratory
- Depresses respiration
- Reverse bronchospasm
-
65Sevoflurane Effects on organ system- Cerebral
- CBF, ICP slight?
- gt1.5 MAC ? impair autoregulation of CBF
- ? CBF ? during hemorrhagic
hypotension - Cerebral metabolic oxygen requirement?
66Sevoflurane Effects on organ system- Etc.
- Neuromuscular
- Produce adequate muscle relaxation
intubation of children - Renal
- RBF slight?
- Hepatic
- Portal vein blood flow? but hepatic artery
blood flow? ? Maintain total hepatic blood flow
oxygen delivery
67Sevoflurane Biotransformation toxicity
- Liver microsomal enzyme P-450(2E1)? ?? ??
- ? Inorganic fluoride nephrotoxicity
- but clinically
associated with significant renal dysfunction - By Alkali ( Barium hydroxide lime or soda lime )
- Sevoflurane ? Nephrotoxic end product
- ( Compound A,
fluorometal-2, 2-difluoro-1-vinylether ) - Compound A? ?? ??? ????? ??
- Respiratory gas temperature?
- Low-flow anesthesia
- Dry barium hydroxide absorbent (Baralyme)
- Sevoflurane concentration?
- Anesthetic of long duration
- Hydrogen fluoride ? acid burn on respiratory
mucosa
68Sevoflurane Contraindication
- Severe hypovolemia
- Malignant hyperthermia
- Intracranial hypertension
-
69Sevoflurane Drug interaction
- Potentiates NMBAs
- Catecholamine-induced arrhythmia???? ??