Pagina 1 - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Pagina 1

Description:

fundamentals of solid propulsion pros: simple long-term storable design can be easily scaled up/down cons: performance lower than liquid propulsion – PowerPoint PPT presentation

Number of Views:162
Avg rating:3.0/5.0
Slides: 31
Provided by: DiegoL3
Category:

less

Transcript and Presenter's Notes

Title: Pagina 1


1
FUNDAMENTALS OF SOLID PROPULSION
  • PROS
  • SIMPLE
  • LONG-TERM STORABLE
  • DESIGN CAN BE EASILY SCALED UP/DOWN
  • CONS
  • PERFORMANCE LOWER THAN LIQUID PROPULSION
  • NO RE-IGNITION

D. Lentini Dipartimento di Ingegneria Meccanica e
Aerospaziale CVA Summer School, 06/07/2011
2
PERFORMANCE INDICES
  • EXHAUST EFFECTIVE VELOCITY c OR SPECIFIC IMPULSE
    Isp
  • c F / m? (THRUST / MASS FLOW RATE, m/s)
  • Isp F / w? F / (g0 m) (THRUST / WEIGHT FLOW
    RATE, s)
  • ? Isp c / g0 c / 9,80665 ? 0,1 c (IN SI
    UNITS)
  • STRUCTURAL COEFFICIENT ?s
  • ?s ms / (mp ms) (ms STRUCTURAL MASS, mp
    PROPELLANT MASS)
  • DESIDERATA (IN ORDER TO GET HIGH PAYLOAD MASS)
  • HIGH c
  • LOW?s
  • WHILE KEEP ING COSTS DOWN!

06/07/2011
3
EFFECTIVE EXHAUST VELOCITY c
  • c CF c
  • CF THRUST COEFFICIENT
  • (DEPENDING ON NOZZLE EXPANSION RATIO ? Ae/A t,
    AND RATIO CHAMBER/AMBIENT
    PRESSURE)
  • c CHARACTERISTIC VELOCITY ? (Tc / M)1/2
  • (DEPENDING ON COMBUSTION CHAMBER CONDITIONS)
  • Ae NOZZLE EXIT AREA
  • At NOZZLE THROAT AREA
  • Tc COMBUSTION CHAMBER TEMPERATURE
  • M MOLAR MASS OF COMBUSTION PRODUCTS

06/07/2011
4
THRUST COEFFICIENT CF F/(pc At) vs. NOZZLE
EXPANSION RATIO ?, PARAMETER pc/pa
  • MAX FOR ? SUCH THAT NOZZLE EXIT PRESSURE
    AMBIENT PRESS.

06/07/2011
5
c vs. ?s (IN VACUUM)

06/07/2011
6
FAMILIES OF LAUNCHERS
  • PAYLOAD CAPABILITY GROWTH VIA ADDITION OF
    STRAP-ON BOOSTERS
  • SCALING OF SOLID BOOSTER RELATIVELY EASY
  • PAYLOAD IN GTO
  • Ariane 40 2000 kg
  • Ariane 42P 2700 kg
  • Ariane 42L 3300 kg
  • Ariane 44P 3100 kg
  • Ariane 44LP 3800 kg
  • Ariane 44L 4300 kg

06/07/2011
7
SOLID ROCKET MOTOR PERFORMANCE
  • HIGHEST ACHIEVED SO FAR
  • cS/L 2500 m/s (SEA LEVEL)
  • cvac 2980 m/s (VACUUM)
  • TO BE COMPARED TO
  • cvac 4560 m/s (LIQUID CRYOGENIC)
  • cvac 3520 m/s (CRYOGENIC OXIDIZER/STORABLE
    FUEL)
  • cvac 3200 m/s (LIQUID STORABLE)

06/07/2011
8
INTERNAL BALLISTICS
  • STUDY OF THE BURNING CHARACTERISTICS OF THE
    SOLID PROPELLANT GRAIN
  • PROPELLANT REGRESSION RATE r, DEPENDING ON
  • GRAIN COMPOSITION
  • CHAMBER PRESSURE pc
  • INITIAL PROPELLANT TEMPERATURE Tp
  • GAS VELOCITY ug ( GRAIN)
  • USUALLY 4 lt r lt 12 mm/s

06/07/2011
9
DE SAINT-ROBERTs LAW
  • FOR Tp Tp0, ug?0
  • r a pcn
  • a, n DEPENDING ON GRAIN COMPOSITION
  • n (COMBUSTION INDEX) GENERALLY IN BETWEEN 0,2 AND
    0,8

06/07/2011
10
EFFECT OF PROPELLANT TEMPERATURE Tp
  • r INCREASES 0,1 TO 0,9 PER DEGREE K
  • TOTAL IMPULSE I ? F dt NEARLY CONSTANT

06/07/2011
11
EFFECT OF GAS VELOCITY ug (EROSIVE BURNING)
  • IF ug ( GRAIN) gt 150 200 m/s, REGRESSION
    RATE INCREASES

06/07/2011
12
EQUILIBRIUM COMBUSTION CHAMBER PRESSURE
  • MASS FLOW RATE COMBUSTION GASES NOZZLE FLOW
    RATE
  • r ?p Ab a pcn ?p Ab
    ? pc At / (RTc)1/2
  • ?p (SOLID) PROPELLANT DENSITY
  • Ab BURNING AREA
  • ? FUNCTION OF SPECIFIC HEATS RATIO ? cp / cv
  • R GAS CONSTANT OF COMBUSTION PRODUCTS
  • Tc COMBUSTION CHAMBER TEMPERATURE
  • AT EQUILIBRIUM pc (a c ?p K)1/(1-n)
  • K Ab /At KLEMMUNG
  • (FRACTURES IN GRAIN LEAD TO EXPLOSION)

06/07/2011
13
STABILITY OF EQUILIBRIUM CONDITIONS
  • COMBUSTION INDEX n MUST BE lt 1 FOR STABILITY

06/07/2011
14
THRUST EVOLUTION IN TIME
  • DEPENDS ON BURNING SURFACE Ab(t)
  • INCREASING Ab ? K ? pc ? F (AND VICEVERSA)

06/07/2011
15
GRAIN DESIGN
  • SIGARETTE, NEUTRAL
  • TUBULAR, INTERNAL BURNING, PROGR.
  • TUBULAR, EXTERNAL BURNING, REGR.
  • STAR, NEUTRAL
  • EXTRUDED, CAST, SEGMENTED

06/07/2011
16
SLIVER
  • UNBURNT PROPELLANT MUST BE ACCOUNTED FOR IN THE
    STRUCTURAL MASS ms
  • IF EXACT LOCATION OF SLIVER IS KNOWN IN ADVANCE,
    IT CAN BE REPLACED WITH LOW-DENSITY MATERIAL

06/07/2011
17
THREE-DIMENSIONAL GRAIN DESIGNS
  • TO ENSURE DESIRED THRUST PROFILE (e.g., TO LIMIT
    PEAK DYNAMICAL PRESSURE DURING LAUNCHER ASCENT)

06/07/2011
18
INSULATION AND LINER
  • INSULATION TO CONTAIN CASE TEMPERATURE, AND
    ENSUING LOSS OF MECHANICAL STRENGTH
  • LINER TO ENSURE THAT PROPELLANT SAFELY ADHERES
    TO INSULATION (AVOID DEBONDING)

06/07/2011
19
SOLID PROPELLANTS DESIDERATA
  • HIGH Tc
  • LOW M OF COMBUSTION PRODUCTS
  • HIGH ?p
  • LOW TEMPERATURE SENSITIVITY
  • LIMITED EROSIVE BURNING
  • EASY IGNITION
  • GOOD MECHANICAL PROPERTIES
  • THERMAL DILATATION COEFFICIENT CLOSE TO CASE
    MATERIALS
  • LONG-TERM STABILITY
  • SAFE HANDLI NG
  • OPACITY TO RADIATION
  • LOW COST

06/07/2011
20
SOLID PROPELLANT FAMILIES
  • DOUBLE BASE
  • e.g., NITROGLYCERIN NITROCELLULOSE
  • SMOKELESS (MILITARY APPLICATIONS)
  • MAX c ? 2300 m/s
  • DANGEROUS!
  • COMPOSITE
  • POWDERED OXIDIZER BINDER POWDERED METAL
  • MAX c ? 2900 m/s (2980 m/s WITH EXTENDIBLE
    NOZZLE)
  • ADOPTED IN SPACE APPLICATIONS
  • LESS DANGEROUS

06/07/2011
21
COMPOSITE PROPELLANT FORMULATION (1/2)
  • OPTIMAL PERFORMANCE WOULD REQUIRE 80 90
    OXIDIZER, BUT MECHANICAL PROPERTIES UNACCEPTABLE
  • OXIDIZER CONTENT LIMITED TO 70 80 MAX
  • PROPELLANT DENSITY ?p ? 1800 kg/ m3
  • n LOWER THAN IN DOUBLE BASE
  • TWO-PHASE FLOW (DUE TO Al2O3) ?
  • Tmelting 2350 K, Tboiling 3250 K

06/07/2011
22
COMPOSITE PROPELLANT FORMULATION (2/2)
  • OXIDIZERS
  • AMMONIUM PERCHLORATE NH4ClO4 (AP)
  • HIGHEST PERFORMANCE
  • TOXIC COMBUSTION PRODUCTS (HCl)
  • AMMONIUM NITRATE NH4NO3 (AN)
  • SLIGHTLY LOWER PERFORMANCE
  • RELATIVELY BENIGN COMBUSTION PRODUCTS
  • BINDERS
  • ASPHALT
  • HTPB (HYDROXIL TERMINATED POLYBUTADIENE)
  • PBAN (POLYBUTADIENE ACRYLIC ACID ACRYLONITRILE)
  • METALS
  • BERYLLIUM (VERY HIGH c, BUT EXTREMELY TOXIC)
  • ALUMINUM (NO MORE THAN 20 ON MECHANICAL GROUNDS)

06/07/2011
23
COMPOSITE PROPELLANTS TWO-PHASE FLOW
  • CONICAL NOZZLES (HEAVIER, HIGHER LOSSES w.r.t.
    BELL NOZZLES)
  • CONICAL
  • BELL
  • DAMPING EFFECT ON COMBUSTION PRESSURE
    OSCILLATION (COMBUSTION INSTABILITY)
  • DUE TO VISCOUS COUPLING BETWEEN THE TWO PHASES
  • VISCOELASTIC BEHAVIOUR OF GRAIN , AND
    INCREASING CHAMBER SIZE, ALSO CONTRIBUTE TO
    SMOOTH OSCILLATIONS

06/07/2011
24
METAL POWDER SIZE
  • SMALL PARTICLES BURN FASTER
  • AVERAGE PARTICLE SIZE MUST BE TAILORED SO AS TO
    SUPPRESS COMBUSTION PRESSURE OSCILLATIONS
  • HOWEVER, PARTICLE SIZE IS DISTRIBUTED OVER A RANGE

06/07/2011
25
HEAT TRANSFER
  • NO COOLANT AVAILABLE
  • SHORT BURNING TIME
  • ABLATIVE THERMAL PROTECTIONS IN MOST SENSITIVE
    SECTIONS

06/07/2011
26
EXERCISE ROD AND TUBE GRAIN (IN VACUUM)
  • F 1000 kN, tb 60 s, ? 20, Tc 3000 K, pc
    5 MPa, ? 1,25,
  • M25 kg/kmol, ug100 m/s, ?p 1800 kg/m3, a 10-7
    m/(s Pan), n 0,7
  • DETERMINE CF, c, c, m?(mass flow rate), mp
    (propellant mass), At, Ae, r, b (web thickness),
    K, Ab, D1, D2, D3, L (grain length), L/D3

10/02/2011
27
ROD AND TUBE GRAIN (1/4)
  • CF F / (pc At) ?2 ?/(?-1)? 1 - (pe/pc)
    (?-1) /? 1/2 ? (pe/pc - pa/pc)
  • ? ? 1/2 2/(? 1)(?1)/2(?-1)
  • pe/pc OBTAINED BY (ITERATIVELY) INVERTING
  • ? Ae/At ? / 2? /(? -1) ? (pe/pc) 2/? 1-
    (pe/pc) (?-1) /?1/2
  • c pc At / m? (R0 Tc/M) 1/2 / ? R0 univ.
    gas const. 8314 J/(kg K)
  • c CF c
  • m? F / c

10/02/2011
28
ROD AND TUBE GRAIN (2/4)
  • mp m? tb (EXCL.
    SLIVER)
  • At F / (CF pc), Ae ? At
  • r a pcn (UNITS!)
  • b 1,01 r tb (1
    TO ACCOUNT FOR SLIVER)
  • K OBTAINED BY INVERTING
  • pc (a c ?p K)1/(1-n)
  • Ab K At

10/02/2011
29
ROD AND TUBE GRAIN (3/4)
  • ASSUME D0 b
  • D1 D0 2 b, D3 D2 2 b
  • D2 DETERMINED BY ENFORCING VALUE OF ug
  • Ap ? (D22 - D12 ) / 4 (PORT AREA)
  • m? ?c ug Ap, WITH ?c pc / (R Tc),
    R R0 / M
  • L Ab / ? (D1 D2 )
  • mp ?p Aweb L, WITH Aweb ? (D32 D22 D12
    D02) / 4

10/02/2011
30
ROD AND TUBE GRAIN (4/4)
  • pe/pc 0,00507, CF 1,820, c 1540 m/s, c
    2804 m/s,
  • m? 357 kg/s, mp 21627 kg, At 0,1099 m2,
    Ae 2,198 m2,
  • r 4,89 mm/s, b 0, 2963 m, K 368, Ab
    40,522 m2,
  • D0b, D1 0,889 m, D2 1,303 m, D3 1,896 m,
  • L 5,884 m, L/D3 3,103

10/02/2011
Write a Comment
User Comments (0)
About PowerShow.com