Deposition - PowerPoint PPT Presentation

About This Presentation
Title:

Deposition

Description:

Lecture 12.0 Deposition Materials Deposited Dielectrics SiO2, BSG Metals W, Cu, Al Semiconductors Poly silicon (doped) Barrier Layers Nitrides (TaN, TiN), Silicides ... – PowerPoint PPT presentation

Number of Views:136
Avg rating:3.0/5.0
Slides: 43
Provided by: Ter61
Learn more at: https://my.che.utah.edu
Category:

less

Transcript and Presenter's Notes

Title: Deposition


1
Lecture 12.0
  • Deposition

2
Materials Deposited
  • Dielectrics
  • SiO2, BSG
  • Metals
  • W, Cu, Al
  • Semiconductors
  • Poly silicon (doped)
  • Barrier Layers
  • Nitrides (TaN, TiN), Silicides (WSi2, TaSi2,
    CoSi, MoSi2)

3
Deposition Methods
  • Growth of an oxidation layer
  • Spin on Layer
  • Chemical Vapor Deposition (CVD)
  • Heat decomposition T of gasses
  • Plasma enhanced CVD (lower T process)
  • Physical Deposition
  • Vapor Deposition
  • Sputtering

4
Critical Issues
  • Adherence of the layer
  • Chemical Compatibility
  • Electro Migration
  • Inter diffusion during subsequent processing
  • Strong function of Processing
  • Even Deposition at all wafer locations

5
CVD of Si3N4 - Implantation mask
  • 3 SiH2Cl2 4 NH3??Si3N4 6 HCl 6 H2
  • 780C, vacuum
  • Carrier gas with NH3 / SiH2Cl2 gtgt1
  • Stack of wafer into furnace
  • Higher temperature at exit to compensate for gas
    conversion losses
  • Add gases
  • Stop after layer is thick enough

6
CVD of Poly Si Gate conductor
  • SiH4 ??Si 2 H2
  • 620C, vacuum
  • N2 Carrier gas with SiH4 and dopant precursor
  • Stack of wafer into furnace
  • Higher temperature at exit to compensate for gas
    conversion losses
  • Add gases
  • Stop after layer is thick enough

7
CVD of SiO2 Dielectric
  • Si0C2H5 O2??SiO2 2 H2
  • 400C, vacuum
  • He carrier gas with vaporized(or atomized)
    Si0C2H5 and O2 and B(CH3)3 and/or P(CH3)3
    dopants for BSG and BPSG
  • Stack of wafer into furnace
  • Higher temperature at exit to compensate for gas
    conversion losses
  • Add gases
  • Stop after layer is thick enough

8
CVD of W Metal plugs
  • 3H2WF6 ?? W 6HF
  • Tgt800C, vacuum
  • He carrier gas with WF6
  • Side Reactions at lower temperatures
  • Oxide etching reactions
  • 2H22WF63SiO2 ?? 3SiF4 2WO2 2H2O
  • SiO2 4HF ?? 2H2O SiF4
  • Stack of wafer into furnace
  • Higher temperature at exit to compensate for gas
    conversion losses
  • Add gases
  • Stop after layer is thick enough

9
Chemical Equilibrium
10
CVD Reactor
  • Wafers in Carriage (Quartz)
  • Gasses enter
  • Pumped out via vacuum system
  • Plug Flow Reactor

Vacuum
11
CVD Reactor
  • Macroscopic Analysis
  • Plug flow reactor
  • Microscopic Analysis
  • Surface Reaction
  • Film Growth Rate

12
Macroscopic Analysis
  • Plug Flow Reactor (PFR)
  • Like a Catalytic PFR Reactor
  • FAo Reactant Molar Flow Rate
  • X conversion
  • rAReaction rate f(CA)kCA
  • CiConcentration of Species, i.
  • Ti Initial molar ratio for species i to
    reactant, A.
  • ?i stoichiometeric coefficient
  • e change in number of moles

13
Combined Effects
Contours Concentration
14
Reactor Length Effects
SiH2Cl2(g) 2 N2O(g)?? SiO2(s) 2 N2(g)2 HCl(g)
How to solve? Higher T at exit!
15
Deposition Rate over the Radius
CAs
r
Thiele Modulus F1(2kRw/DABx)1/2
16
Radial Effects
This is bad!!!
17
Combined Length and Radial Effects
Wafer 10
Wafer 20
18
CVD Reactor
  • External Convective Diffusion
  • Either reactants or products
  • Internal Diffusion in Wafer Stack
  • Either reactants or products
  • Adsorption
  • Surface Reaction
  • Desorption

19
Microscopic Analysis -Reaction Steps
  • Adsorption
  • A(g)S??AS
  • rADkAD (PACv-CAS/KAD)
  • Surface Reaction-1
  • ASS??SS CS
  • rSkS(CvCAS - Cv CCS/KS)
  • Surface Reaction-2
  • ASBS??SSCSP(g)
  • rSkS(CASCBS - Cv CCSPP/KS)
  • Desorption CSlt----gt C(g) S
  • rDkD(CCS-PCCv/KD)
  • Any can be rate determining! Others in Equilib.
  • Write in terms of gas pressures, total site conc.

20
Rate Limiting Steps
  • Adsorption
  • rArAD kADCt (PA- PC /Ke)/(1KAPAPC/KDKIPI)
  • Surface Reaction
  • (see next slide)
  • Desorption
  • rArDkDCt(PA - PC/Ke)/(1KAPAPC/KDKIPI)

21
Surface Reactions
22
Deposition of Ge
Ishii, H. and Takahashik Y., J. Electrochem. Soc.
135,1539(1988).
23
Silicon Deposition
  • Overall Reaction
  • SiH4 ?? Si(s) 2H2
  • Two Step Reaction Mechanism
  • SiH4 ?? SiH2(ads) H2
  • SiH2 (ads) ?? Si(s) H2
  • RatekadsCt PSiH4/(1Ks PSiH4)
  • Kads Ct 2.7 x 10-12 mol/(cm2 s Pa)
  • Ks0.73 Pa-1

24
Silicon Epitaxy vs. Poly Si
  • Substrate has Similar Crystal Structure and
    lattice spacing
  • Homo epitaxy Si on Si
  • Hetero epitaxy GaAs on Si
  • Must have latice match
  • Substrate cut as specific angle to assure latice
    match
  • Probability of adatoms getting together to form
    stable nuclei or islands is lower that the
    probability of adatoms migrating to a step for
    incorporation into crystal lattice.
  • Decrease temp.
  • Low PSiH4
  • Miss Orientation angle

25
Surface Diffusion
26
Monocrystal vs. Polycrystalline
PSiH4? torr
27
Dislocation Density
  • Epitaxial Film
  • Activation Energy of Dislocation
  • 3.5 eV

28
Physical Vapor Deposition
  • Evaporation from Crystal
  • Deposition of Wall

29
(No Transcript)
30
Physical Deposition - Sputtering
  • Plasma is used
  • Ion (Ar) accelerated into a target material
  • Target material is vaporized
  • Target Flux ? Ion Flux Sputtering Yield
  • Diffuses from target to wafer
  • Deposits on cold surface of wafer

31
DC Plasma
  • Glow Discharge

32
RF Plasma Sputtering for Deposition and for
Etching
RF DC field
33
Sputtering Chemistries
  • Target
  • Al
  • Cu
  • TiW
  • TiN
  • Gas
  • Argon
  • Deposited Layer
  • Al
  • Cu
  • TiW
  • TiN
  • Poly Crystalline Columnar Structure

34
Deposition Rate
  • Sputtering Yield, S
  • Sa(E1/2-Eth1/2)
  • Deposition Rate ?
  • Ion current into Target Sputtering Yield
  • Fundamental Charge

35
RF Plasma
Sheath
Plasma
rf
Sheath
  • Electrons dominate in the Plasma
  • Plasma Potential, Vp0.5(VaVdc)
  • Va applied voltage amplitude (rf)
  • Ions Dominate in the Sheath
  • Sheath Potential, VspVp-Vdc
  • Reference Voltage is ground such that Vdc is
    negative

36
Floating Potential
  • Sheath surrounds object
  • Floating potential, Vf
  • kBTeeV
  • due to the accelerating Voltage

37
Plasma Chemistry
  • Dissociation leading to reactive neutrals
  • e H2 ? H H e
  • e SiH4 ? SiH2 H2 e
  • e CF4 ? CF3 F e
  • Reaction rate depends upon electron density
  • Most Probable reaction depends on lowest
    dissociation energy.

38
Plasma Chemistry
  • Ionization leading to ion
  • e CF4 ? CF3- F
  • e SiH4 ? SiH3 H 2e
  • Reaction depend upon electron density

39
Plasma Chemistry
  • Electrons have more energy
  • Concentration of electrons is 108 to 1012 1/cc
  • Ions and neutrals have 1/100 lower energy than
    electrons
  • Concentration of neutrals is 1000x the
    concentration of ions

40
Oxygen Plasma
  • Reactive Species
  • O2e?O2 2e
  • O2e?2O e
  • O e ? O-
  • O2 e ? 2O

41
Plasma Chemistry
  • Reactions occur at the Chip Surface
  • Catalytic Reaction Mechanisms
  • Adsorption
  • Surface Reaction
  • Desorption
  • e.g. Langmuir-Hinshelwood Mechanism

42
Plasma Transport Equations
  • Flux, J
Write a Comment
User Comments (0)
About PowerShow.com