Title: Outline
1Outline
- How is ferromagnetism manifested?
- What are the types of magnetism?
- What is Fe3O4 spinel?
- What is nanoscience?
- How do we make ferrofluids?
2We will have a Monday class next week
- Turn in extra credit
- Writing exercises will be returned
- Possible chance for regaining lost points
- SRTI evaluations
3Magnetic field
attraction
S
S
N
N
repulsion
S
S
N
N
The field of a force a property of the space in
which the force acts
http//www.trincoll.edu/cgeiss/GEOS_312/GEOS_312.
htm
4Interaction with magnetic field
B
aligning torque
m pd
m AIn
t m B sin?
p
d
?
?
-p
http//www.trincoll.edu/cgeiss/GEOS_312/GEOS_312.
htm
5Magnetic field (force lines)
F
S
N
Magnetic field is not a central field (no free
magnetic charges)
http//www.trincoll.edu/cgeiss/GEOS_312/GEOS_312.
htm
6Behavior of magnetic materials
Magnetization (cm or mB or M)
Ferromagnet, Ferrimagnet
Paramagnet
Antiferromagnet
Temperature
TNeel
TCurie
7Types of bulk magnetism
Ferromagnetism
Antiferromagnetism
Ferrimagnetism
Paramagnetism
H
Large M (1-5 mB / atom)
Small M (10-3 mB / atom)
Small M (10-3 mB / atom)
Large M (1-5 mB / atom)
8Development of permanent (hard) magnets
Hard magnets
Soft magnets
M
M
http//www.tf.uni-kiel.de/matwis/amat/elmat_en/kap
_4/backbone/r4_3_6.html
9What is nanoscience?
10- ZnO nanowire UV lasers of about 100nm diameter
and 10mm length synthesized at Berkeley. (Yang
et al, Science, 292, p. 1897, 2001).
Contacts on a 60nm bismuth wire to study motion
of single defects (kmf.pa.msu.edu/Research/resrch
04.asp )
ZnO nanowire UV lasers of about 100 nm diameter
and 10 mm length synthesized at Berkeley. (Yang
et al, Science, 292, p. 1897, 2001)
11Radius rules
- A sphere of this size (relative to the lattice of
size of its neighbors) is just able to touch all
off its neighbors for the void geometries below.
CN Relative radius Void geometry Polyhedron name
2 lt15.5 Linear Line
3 15.5 Triangular Triangle
4 25.5 Tetrahedral Tetrahedron
6 41.4 Octahedral Octahedron
8 73.2 Cubic (BCC) Cube
12 100 Cuboctahedral (HCP, CCP) Cuboctahedron
- Similar considerations govern the formation of
more complex structural arrangements
12Arrangements of nanoparticles mimics
arrangements of atoms
13Some arrangements are very complex
14Electronic and magnetic materials can be combined
into sophisticated devices
15Magnetite
Fe3O4
- Magnetite vs. lodestone
- General spinel formula AB2O4
-
- A 2 metal, B 3 metal
- 1/2 of octahedral holes, 1/8 of tetrahedral holes
filled on an approximate FCC oxygen lattice - Fe3O4 1 Fe2 2 Fe3
- Inverse spinel B(AB)O4
- Ferrimagnetic ordering at 850K
- Synthesis 2 FeCl3 FeCl2 8 NH3 4H2O --gt
Fe3O4 8 NH4Cl
16Magnetite (Fe3O4)
Unit cell A-sites (8 Fe3) B-sites (8 Fe3 and 8
Fe2)
Normal Spinel (ZnFe2O4)
Inverse Spinel (Fe3O4)
A
B
A
B
gt
Ferrimagnetism
Zn2
Fe3
Fe3
Fe3
Fe3
Fe2
5µB
5µB
4µB
17Development of permanent (hard) magnets
M
Nd2Fe14B
Magnetic energy (Gauss / m3)
M
Steel
http//www.tf.uni-kiel.de/matwis/amat/elmat_en/kap
_4/backbone/r4_3_6.html
18Ferrofluids of 10nm ferrite particles
19Ferrofluids
20(No Transcript)
21(No Transcript)
22Types of bulk magnetism
Ferromagnetism
Antiferromagnetism
Ferrimagnetism
Paramagnetism
H
Large M (1-5 mB / atom)
Small M (10-3 mB / atom)
Small M (10-3 mB / atom)
Large M (1-5 mB / atom)
23Canted Antiferromagnetism
Ferromagnetism
Antiferromagnetism
Ferrimagnetism
H
Canted Antiferromagnetism
Ferromagnetism
Antiferromagnetism
Ferrimagnetism
H
24(No Transcript)
25(No Transcript)
26Ferromagnetism
Antiferromagnetism
Ferrimagnetism
Paramagnetism
H
Ferromagnetism
Antiferromagnetism
Ferrimagnetism
Paramagnetism
H
27Types of magnetism
Ferromagnetism
Antiferromagnetism
Ferrimagnetism
Paramagnetism
H
Large M (1-5 mB / atom)
Small M (10-3 mB / atom)
Small M (10-3 mB / atom)
Large M (1-5 mB / atom)
28(No Transcript)
29Ferrofluid topics
- Magnetic dipoles, not monopoles like charges
- Field gradient - emphasized by magnetic field
lines - A test dipole will aligns itself parallel to
magnetic field lines
30Development of permanent (hard) magnets
31(No Transcript)