Electronic structure and magnetic properties of II-VI DMS - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Electronic structure and magnetic properties of II-VI DMS

Description:

Electronic structure and magnetic properties of II-VI DMS Thomas Chanier ISEN Engineer PhD student IM2NP, MARSEILLE, France Co-workers : R. Hayn, M. Sargolzaei, I ... – PowerPoint PPT presentation

Number of Views:156
Avg rating:3.0/5.0
Slides: 29
Provided by: Usernamep69
Category:

less

Transcript and Presenter's Notes

Title: Electronic structure and magnetic properties of II-VI DMS


1
Electronic structure and magnetic properties of
II-VI DMS
Thomas Chanier ISEN Engineer PhD student IM2NP,
MARSEILLE, France Co-workers R. Hayn, M.
Sargolzaei, I. Opahle, M. Lannoo
PhD defense - 29/08/2008 Faculté de St-Jérôme,
Marseille, France
2
Introduction
  • Failure of Moores law
  • The number of transistors / inch² on mP chips
    doubles every two years
  • Current technology
  • Based on electron charge
  • Atomic scale
  • Quantum nature of the electron
  • Needed new science to replace classical micro-
  • electronics

http//public.itrs.net/
LGlt50 nm (1000 at.)
dLG²
Fe corral on Au
MOS FET
TEM image
STM image, IBM
3
Spintronics
  • SpinFET - Datta and Das, APL 56 665 (1990)
  • Principals
  • Rashbas precession
  • Current challenge
  • Injection of spin-polarized current
  • in the SC channel
  • Unsuccessful attempts
  • S and D in FM metal weak injection
  • due to conductivity mismatch with SC
  • Schmidt et al., PRB 62 R4790 (2000)
  • Alternative solution for spin injection
  • DMS diluted magnetic SC
  • - Classical SC doped with magnetic ions
  • (TM or rare earth)

Scientific American
4
Basics on II-VI DMS
Host SC covalent bonds Zn2 -
A2- Substitutional impurity TM2 config. Ar
3dn 4s0 - for Co, n7 ? S 3/2 - for Mn,
n5 ? S 5/2 ZB only 1 NN exchange integral
JNN W 2 NN exch. Int. in-plane Jin
out-of-plane Jout
Ref. 1 Jamieson, J. Phys. Chem. Solids 41 963
Ref. 2 CRC Handbook of Chemistry and
Physics Ref. 3 Sabine, Acta Cryst. B 25
2254 Ref. 4 Reeber, JAP 38 1531 Ref. 5 Yim,
J. Electr Soc Sol-St.Sci. Tech 119 381
5
State of the art
  • l

Dietl (2001)
FM prediction for ZnTMO - Sato et al., Physica
E 10 251 (2001) LSDA FM JNN in ZnCoO - Dietl
et al., PRB 63 195205 (2001) Zener model, p-type
ZnMnO AFM FM competition for ZnCoO
AFM for ZnMnO - Lee et al., PRB 69 085205
(2004) - Sluiter et al. , PRL 94 187204 (2005)
LSDA pseudopotential BUT
in contrast to experiments
Sati (2007)
  • Our study AFM NN exchange constants
  • - LSDAU Hubbard-type correction to LSDA ? AFM
    JNN
  • T. Chanier et al., PRB 73 134418 (2006)
  • Predictions confirmed AFM interactions in
    ZnCoO,
  • P. Sati et al., PRL 98 137204 (2007)

LSDAU
6
d-d exchange Hamiltonian
  • Heisenberg Hamiltonian
  • J gt 0 ? FM
  • J lt 0 ? AFM
  • Comparison of ?E in the Heisenberg model with
    ?ETotal obtained
  • from FM and AFM First-principle calculations
  • chain
  • pair
  • Where ST 2S the total spin for two
    magnetic impurities of spin S
  • First-principle calculations
  • FPLO full potential local orbital approximation
    (Koepernic et al., PRB 59 1743)
  • LSDA Perdew-Wang 92 Vxc functional (Perdew and
    Wang, PRB 45 13244)

7
Supercell approach
8
Exchange constants for ZnOCo
  • LSDA competition between AFM and FM
    interactions
  • for the two type of NN in constrast to exp.
  • Necessity of better taking into account the
  • strong electron correlation in the TM 3d-shell
  • LSDAU AFM exchange constants for the two type
  • of NN in quantitative agreement with exp.
  • We use the same Slater parameters as those of
    CoO
  • Two realistic values for U 6 and 8 eV
  • Ref. Anisimov et al., PRB 44 943 (1991)
  • Our values Jin -1.7 0.3 meV, Jout -0.8
    0.3 meV
  • Experiments
  • Tcw of magnetic susceptibility Jave -33 K
    -2.8 meV
  • INS Jin -2.0 meV, Jout - 0.7 meV

Ref. 1 Lee and Chang, PRB 69 085205 (2004)
(LSDA, pseudopotential) Ref. 2 Sluiter et al.,
PRL 94 187204 (2005) (LSDA, pseudopotential)
9
Exchange constants for ZnOMn
  • LSDA underestimation of AFM exchange constants
  • in either type of NN
  • LSDAU AFM exchange constants in quantitative
  • agreement with experiments (SP of MnO, U 6 8
    eV)
  • Our values Jin -1.8 0.2 meV, Jout -1.1
    0.2 meV
  • Experimental values two values of J (MST)
  • J1 -2.08 meV, J2 -1.56 meV
  • Ref. Gratens et al., PRB 69 125209 (2004)
  • Ref. 2 Sluiter et al.,
    PRL 94 187204 (2005)

10
Spin density
Co-O-Co plane, in-plane NN Co-O-Co plane,
out-of-plane NN
11
JNN for ZB II-VI DMS
  • Chemical trends of JNN Supercells TM2Zn6A8 (ZB)

AIIBVIMn
AIIBVIMn
- U from Ref. Gunnarson et al., PRB 40 10407
(1989) - Charge transfer from FPLO
12
sp-d exchange constants
  • Chemical trends of Na and Nb Supercells TMZn3A4
    (ZB)
  • Mean Field Approx.
  • With N the cation concentration
  • sp-d exch cst for CBE and VBH at G

13
LSDAU DOS
14
LSDAU DOS
15
LSDAU DOS
16
LSDA DOS
17
Main features of DOS
  • The upper VB is formed by a semi-circle of width
    W
  • LSDA BS inverted FM VB spin splitting DEv
    Ev - Ev gt 0
  • too high position of TM 3d level, always a bound
    state
  • LSDAU formation of a BS FM DEv if Vpd gt Vpd
  • If U , the occupied 3d levels are shifted by
    -U/2 from VBM , 0 EBS-Ev
  • Hyp. Vpd ? f(U)
  • mm

c
e
l
18
Analytical model
  • Bethe Lattice Model
  • - TB Hamiltonian
  • - Basis set - Hamiltonian matrix
  • - Local Creen Funct.

(t2g 3d orb. for TM2) (t2 p
orb. for A2-)
19
Resolution
  • Host Green function
  • Local Green function
  • No bound state f0 lt a e0 lt a-f0
  • A bound state out of continuum f0 gt a e0 gt
    a-f0
  • 2 bound states on both side of the continuum
  • f0 gt a e0 lt a-f0

Vpd 0.90 eV
Vpd 0.90 eV
a 2 eV, e0 1 eV
a 2 eV, e0 1 eV
20
Resolution
  • Host Green function
  • Local Green function
  • No bound state f0 lt a e0 lt a-f0
  • A bound state out of continuum f0 gt a e0 gt
    a-f0
  • 2 bound states on both side of the continuum
  • f0 gt a e0 lt a-f0

Vpd 0.90 eV
Vpd 0.90 eV
a 2 eV, e0 1 eV
a 2 eV, e0 1 eV
21
Resolution
  • Host Green function
  • Local Green function
  • No bound state f0 lt a e0 lt a-f0
  • A bound state out of continuum f0 gt a e0 gt
    a-f0
  • 2 bound states on both side of the continuum
  • f0 gt a e0 lt a-f0

Vpd 0.90 eV
a 2 eV, e0 1 eV
22
Formation of a Zhang-Rice Singlet
  • Condition of formation of a bound state
  • - Necessary condition for a BS
  • f0 gt aW/2 e0 not too deep
  • - for ZnOTM
  • Two bound states

23
Results
  • Curve fitting - Results
  • - Supercell MnZn31O32
  • - Harrisons parametrization

24
Vpd for Host II-VI SC
c
  • - Host SC DOS - Critical hybridization param.
  • - Harrisons parametrization

25
Vacancy in II-VI SC ab initio study
  • - Basis set - NN relaxation
  • - Electronic structure
  • - LSDA results DE ELDA-ELSDA
  • Zn4A3 calc. Neutral anion vacancy is
    non-magnetic

26
Analytical model
  • Molecular cluster model - sp3 molecular
    orbitals Yi (i1..4)
  • - Hamiltonian
  • Group Theory SALC of Yi
  • - monoelectronic states
  • A1 and T2 representations
  • - polyelectronic states direct product group

27
Results
  • Monoparticule eigenenergies
  • Biparticle eigenenergies
  • D -4 4 eV, U 4 eV, V 1 eV
  • VZn0 in ZnO S 1 state characterized by
    EPR
  • Ref. D. Galland et al., Phys. Lett. 33A,
    1 (1970)

VA0 in ZnO, S 0 VZn0 in ZnO, S 1
28
Conclusion
  • Mn- and Co-doped DMS
  • Necessity of taking into account the strong
    electron correlation on the TM 3d shell.
  • The LSDAU exchange constants are in quantitative
    agreement with experiments.
  • Importance of the hybridation parameter Vpd to
    describe correctly the DOS
  • of DMS.
  • Single vacancy in II-VI SC
  • Neutral cation vacancy in more ionic ZnO carries
    a spin S 1 in agreement with experiments.
  • This state is quasi-degenerate with a S 0 state
    in other less ionic II-VI SC.
  • Neutral anion vacancy is non-magnetic.
  • Publications T. Chanier et al. , PRB 73 134418
    (2006) T. Chanier et al. , PRL 100 026405 (2008)
Write a Comment
User Comments (0)
About PowerShow.com