Photovoltaic Power Converter - PowerPoint PPT Presentation

1 / 65
About This Presentation
Title:

Photovoltaic Power Converter

Description:

Advisors: Dr. Woonki Na Dr. Brian Huggins Students: Thomas Carley Luke Ketcham Brendan Zimmer Bradley University Department Of Electrical Engineering – PowerPoint PPT presentation

Number of Views:437
Avg rating:3.0/5.0
Slides: 66
Provided by: eegu
Category:

less

Transcript and Presenter's Notes

Title: Photovoltaic Power Converter


1
Photovoltaic Power Converter
Advisors Dr. Woonki Na Dr. Brian Huggins
Students Thomas Carley Luke Ketcham Brendan
Zimmer
Bradley University Department Of Electrical
Engineering 5/1/12
2
Presentation Outline
  • Project Summary
  • Project Motivation
  • Overall System Block Diagram
  • Boost Converter
  • Inverter
  • Future Work

3
Project Summary
  • Photovoltaic Array
  • Supplies DC and AC Power
  • Boost Converter to step up PV voltage
  • Maximum Power Point Tracking
  • DC-AC converter for 120Vrms 60Hz
  • LC filter

4
Project Motivation
  • Power Electronics
  • Alternative Energy Sources
  • Useful Applications
  • Household grid-tie inverter
  • Electric drives

5
System Block Diagram
6
BP350J PV Panel
  • Pmax 50W
  • Voltage at Pmax 17.5V
  • Current at Pmax 2.9A
  • Nominal Voltage 12V
  • Isc 3.2A
  • Voc 21.8V

7
DC Subsystem Requirements
  • The boost converter shall accept a voltage from
    the photovoltaic cells.
  • The input voltage shall be 48 Volts.
  • The average output shall be 200 Volts /- 25
    Volts.
  • The voltage ripple shall be less than 20 Volts
  • The open-loop boost converter shall operate above
    65 efficiency.
  • The boost converter shall perform maximum power
    point tracking.
  • The PWM of the boost converter shall be regulated
    based on current and voltage from the PV array.
  • The efficiency of the MPPT system shall be above
    80.

8
Boost Converter
Test Boost Converter 20V to 66V D .3
9
Boost Converter Design
10
Hardware
11
Key Components
  • MOSFET (IRFP4768PbF)
  • VDSS 250V Id 93A
  • Ultrafast Diode (HFA50PA60C)
  • VR 600V If 25A Trr 50ns
  • Inductors (3mH)
  • Capacitors (6000uF)

12
Gate Driver
  • IR2110

13
Boost Converter Simulations
Output Voltage (V) 20V 66V
14
Boost Converter Simulations
Boost Converter Current (A) 20V-66V
15
Boost Converter Testing
10V to 16.5V 40 Duty Cycle
Output Voltage
Inductor Current
16
Eliminating Voltage Spikes
  • Parasitic capacitance and inductance
  • Diode forward recovery time
  • Circuit Layout
  • Add Gate Resistor to increase turn-on and
    turn-off time
  • Add RC snubber

17
Increasing Turn off Time
Turn off time increased from 92 ns to 312 ns
18
Determining RC snubber values
19
Reducing Voltage Spikes
20V to 66V 70 duty
Without Gate Resistor And RC Snubber
With Gate Resistor And RC Snubber
20
Boost Converter Current
Efficiency 60.7
Efficiency 58.1
With RC snubber and Gate Resistor
Without RC snubber and Gate Resistor
21
Future Work For Boost Converter
  • Optimize inductor value
  • Printed Circuit Board Layout
  • Optimize RC snubber values
  • Test with multiple solar panels

22
Maximum Power Point Tracking (MPPT)
  • Every PV has a V-I and P-V curve for a given
    insolation and temperature
  • The MPP is seen clearly from the P-V curve
  • Anytime the system is not at the MPP, it is not
    at its most efficient point

I
V
MPP
P
V
23
Perturb and Observe (PO)
  • Slight voltage perturbation
  • Observation of
  • Change in PV power
  • Change in boost converter duty cycle
  • Make an increase or decrease in boost converter
    duty cycle based on observation

24
PO
?P ?D D

- -
- -
- -
25
MPPT Algorithm Comparison
  • Perturb and Observe
  • Pros
  • Very popular
  • Simple to implement
  • Con
  • Power loss from perturbation
  • Incremental Conductance
  • Pro
  • Tracks a rapidly changing MPP
  • Cons
  • Increased complexity
  • Increased susceptibility to noise

26
Implementing MPPT
  • Spectrum Digital eZdsp F2812
  • Voltage Sensing
  • Current Sensing
  • Matlab Simulink Modeling with Code Composer Studio

27
eZdsp F2812 features
  • Texas Instruments TMS320F2812 chip
  • 32-bit DSP Core 150 MIPS
  • 18K 64K RAM
  • 128K Flash
  • 30 MHz clock
  • 12 PWM outputs
  • 16 ADC 12 bit inputs
  • 60 ns conversion time

28
Voltage Sensing
  • Vpv is 0 to 24V
  • VADC 0 to 3.3V

29
Current Sensing
  • Ipv 0 to 50A
  • Vout 0 to 4V

30
Simulink Model
PO
  • ADC measurement
  • Voltage and current every 100µs
  • Mean value with running window of 1Hz

31
Simulink Model
Soft Start
32
MPPT and Soft Start Results
  • Soft start duty cycle control
  • 0 to 30
  • 5 increase every 5 seconds
  • Transition to MPPT after 40 seconds
  • MPPT duty cycle control
  • ADC measurements
  • Voltage and current every 100µs
  • Mean value with running window of 1Hz
  • 1 increase/decrease every 1 second

33
Power Supplies
  • 120Vrms 60Hz input from wall
  • 15V, 5V, and 3.3V output
  • Consists of Transformer, Diode Rectifier, 470uF
    capacitor, and voltage regulators
  • Needed for Gate Drivers, Op Amps, Sensing ICs,
    and other logic devices

34
Power Supply
  • Transformer (3FL20-125)
  • Secondary Voltage of 10VAC
  • Secondary Current of 0.25A RMS

35
Power Supply
36
AC Subsystem Overview
37
AC Subsystem Goals
  • DC power to AC power
  • AC power quality

38
AC Subsystem Requirements
  • The AC side of the system shall invert the output
    of the boost converter.
  • The output of the inverter shall be AC voltage.
  • The output shall be 60Hz /- 0.1Hz.
  • The inverter output shall be filtered by a LC
    filter.
  • The filter shall remove high switching frequency
    harmonics.
  • Total harmonic distortion of the output shall be
    less than 15.

39
Topology - Inverter
Single-phase bridge inverter
40
Switching Logic
  • Desire to control
  • Output frequency
  • Output magnitude
  • ? Sinusoidal PWM!

41
Theory of Sinusoidal (Bipolar) PWM
  • The magnitude of a triangle carrier signal is
    compared to a sinusoidal reference
  • If Vreference gt VcarrierPWM high
  • If Vreference lt VcarrierPWM low

A complementary signal drives opposite leg of
H-bridge
42
Unipolar Sinusoidal PWM
  • Two sinusoids compared to a triangle reference
  • Each comparison drives one H-bridge leg
    respectively

43
Unipolar PWM in Action
  • Two comparisons
  • Each leg of H-bridge driven independently
  • 3-level output
  • Less harmonic distortion than bipolar PWM

44
Design Equations
  • Fundamental Output Magnitude
  • Output Frequency
  • Modulation index, mi
  • Frequency Modulation ratio, mf

45
Implications
  • mi can be used to control output magnitude
    (voltage)
  • Typically 0 lt mi 1
  • Overmodulation if mi gt 1 (non-linear operation)
  • Useful for obtaining large output power, but
    harmonic distortion will be large

46
Implications
  • Output Frequency
  • Can select mf to remove even harmonics from
    output spectrum
  • For Bipolar PWM, mf odd integer
  • For Unipolar PWM, mf even integer

Example (Unipolar) fcarrier 60 Hz ftriangle
2520 Hz mf 42
47
Output
  • Desire sinusoidal output
  • Output isnt very sinusoidal
  • Use a filter
  • LC filter

48
LC Filter
  • Goal Smooth inverter output to smooth AC
  • Second order LC filter transfer function G(s)
    1/(LCs21)
  • fcarrier lt cutoff frequency lt fcarrier mf

49
Simulation
  • PSIM, Circuit Simulation Software
  • Proof of concept simulations
  • Bipolar PWM vs. Unipolar PWM
  • Effectiveness of LC filter with both schemes

50
PSIM Schematic (Bipolar PWM)
mi 0.8 mf 11 Vd 200 V
51
PSIM Schematic (Unipolar PWM)
mi 0.8 mf 10 Vd 200 V
52
Simulation Result Vout (unfiltered)
Bipolar PWM
Unipolar PWM
53
Simulation Results (filtered)
Bipolar PWM
Unipolar PWM
fout 60 Hz (both cases)
54
Bipolar PWM Frequency Domain
Unfiltered Output
Filtered Output
mi 0.8 mf 81
55
Unipolar PWM Frequency Domain
Unfiltered Output
Filtered Output
mi 0.8 mf 80
56
Implementation Major Hardware Components
  • IGBT
  • Gate Drive
  • LC Filter
  • Spectrum Digital eZdsp F2812
  • Texas Instruments TMS320F2812
  • Simulink, Code Composer Studio

57
IGBT
  • International Rectifier IRG4PC30UDPbF
  • VCEmax 600 V
  • fswitching max 40 kHz
  • ICmax 12 A
  • Cost 2-3 each

58
Gate Drive
  • International Rectifier IR2110
  • Drives Two IGBTs/MOSFETs
  • Cost 3 each

59
LC Filter
L 1 mHC 100 µF fcutoff 500 Hz
Cost of components 6
60
Sinusoidal PWM Simulink
61
Experimental Results
Bipolar PWM Vd 10V (DC) Vout 13.6V
(AC) mi0.8 mf 83
62
Future Work
  • Closed-loop MPPT control with PV input
  • Inverter voltage and current controller
  • Tying the inverter to the grid
  • Phase Locked Loop (PLL)

63
  • Special thanks to
  • Dr. In Soo Ahn
  • Mr. Steve Gutschlag

64
References
  • PV Module Simulink Models. ECEN2060. University
    of Colorado Boulder.
  • Rozenblat, Lazar. "A Grid Tie Inverter for Solar
    Systems." Grid Tie Inverter Schematic and
    Principles of Operation. 6 Oct. 2011.
    lthttp//solar.smps.us/grid-tie-inverter-schematic.
    htmlgt.
  • Tafticht, T., K. Agbossou, M. Doumbia, and A.
    Cheriti. "An Improved Maximum Power Point
    Tracking Method for Photovoltaic Systems."
    Renewable Energy 33.7 (2008) 1508-516.
  • Tian, Yi. ANALYSIS, SIMULATION AND DSP BASED
    IMPLEMENTATION OF ASYMMETRIC THREE-LEVEL
    SINGLE-PHASE INVERTER IN SOLAR POWER SYSTEM.
    Thesis. Florida State University, 2007. 
  • Zhou, Lining. EVALUATION AND DSP BASED
    IMPLEMENTATION OF PWM APPROACHES FOR SINGLE-PHASE
    DC-AC CONVERTERS. Thesis. Florida State
    University, 2005.

65
Questions?
Write a Comment
User Comments (0)
About PowerShow.com