Lecture 3 Discrete time systems - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Lecture 3 Discrete time systems

Description:

It is a low pass filter!!! Systems properties. Memory ... Convolution is distributive. x[n] (h1[n] h2[n]) = x[n] h1[n] x[n] h2[n] Cascade connection: ... – PowerPoint PPT presentation

Number of Views:100
Avg rating:3.0/5.0
Slides: 18
Provided by: Rodr155
Category:

less

Transcript and Presenter's Notes

Title: Lecture 3 Discrete time systems


1
Lecture 3Discrete time systems
2
Representation of discrete-time systems
T.
x n
y n
Example Ideal delay system y n x n nd
-8 lt n lt 8
3
A memoryless system
The accumulator system
4
Moving average
It is a low pass filter!!!
5
Systems properties
  • Memory
  • Causality
  • Stability
  • Time invariance
  • Linearity

6
  • Memory
  • A system is memoryless if yn f ( xn )
  • i.e. it sees only present values.
  • A system has memory if y n depends on previous
    values
  • it can also depend on present and future values!
  • Causality
  • A system is causal if the output yn depends
    only on present and/or past values.
  • On-line systems are causal by definition

7
  • Time-invariance
  • A system is time invariant if a shift in the
    input causes a corresponding shift of the output.
  • For all n0 x1 n x n-n0 gives y1n y
    n-n0
  • Stability
  • A system is stable if every bounded input
    sequence produces a bounded output
  • i.e. it never diverges.
  • If xn Bx lt 8 then yn By lt 8

8
  • Linearity
  • Linear systems obey the principle of
    superposition.
  • 1) Additive property.
  • T x1n x2n T x1n T x2n
    y1n y2n
  • 2) Scaling property
  • T a x1n a T x1n a yn
  • Altogether T a x1n b x2n a
    Tx1n b Tx2n
  • More generally
  • If xn Sk ak xkn then yn Sk ak
    ykn
  • where ykn is the system response to the input
    xkn

9
Exercise
  • Which properties (linearity, causality,
    time-invariance, stability and memory) posses the
    following systems
  • a) yn 3 xn 4 xn-1
  • b) yn 2 yn-1 xn2
  • c) yn n xn
  • d) yn cos (xn)
  • e) yn log10 (xn)
  • f) yn xn4
  • g) The accumulator system
  • h) The ideal delay system
  • i) The moving average system

10
  • A sequence can be represented as a linear
    combination of delayed impulses

11
Linear time-invariant systems (LTI)
  • Let hkn be the response to dn-k (an impulse
    at n k)
  • If the system is linear
  • If the system is time-invariant

12
Convolution sum
  • Convolution sum
  • Linear time-invariant systems can be described
    by the convolution sum!

13
  • Note that
  • A linear time-invariant system can be completely
    characterized by its input response hn

dn
hn
LTI
14
Properties of LTI systems (or properties of
convolution)
  • Convolution is conmutative
  • xn ? hn hn ? xn
  • Convolution is distributive
  • xn ? (h1n h2n) xn ? h1n xn ?
    h2n

15
  • Cascade connection
  • yn h1n ? h2n ? xn h1n ?
    h2n ? xn

h2
xn
yn
h1

h1?h2
xn
yn
16
  • Parallel connection
  • yn h1n ? xn h2n ? xn h1n
    h2n ? xn

h1
yn
xn

h2

h1h2
xn
yn
17
  • LTI systems are stable iff
  • LTI systems are causal if
  • hn 0 n lt 0
Write a Comment
User Comments (0)
About PowerShow.com