Youssef Belhamadia et Andr Fortin - PowerPoint PPT Presentation

1 / 43
About This Presentation
Title:

Youssef Belhamadia et Andr Fortin

Description:

J.C. Bischof et Al, Cryobiology (1997) Rectal protection during. prostate cryosurgery ... J.C. Bischof et Al, Cryobiology (1997) Liver cryosurgery. INRIA. 38 ... – PowerPoint PPT presentation

Number of Views:50
Avg rating:3.0/5.0
Slides: 44
Provided by: ysf
Category:

less

Transcript and Presenter's Notes

Title: Youssef Belhamadia et Andr Fortin


1

Modélisation Numérique des problèmes de
Cryochirurgie INRIA 2003, Paris
  • Youssef Belhamadia et André Fortin
  • GIREF

2
Liver cryosurgery
3
Prostate cryosurgery
J.C. Bischof et Al, Cryobiology (1997)
4
Cryosurgery
5
Plan
  • Introduction
  • Stefans problem
  • Enthalpy and semi-phase-field formulations
  • Weak formulation
  • Adaptive strategy
  • Numerical results 2D
  • Analytical solution
  • Formation of a cusp
  • Oscillating source problem
  • Numerical results 3D
  • Oscillating sphere
  • Formation of a cusp
  • Oscillating source problem
  • Applications to cryosurgery
  • Conclusions

6
Introduction
  • Motivation of this work part of a large project
    on cryosurgery (SKALPEL-ITC)
  • Idea insert cryoprobes in a tumor. The
    freezing-thawing (phase change) will destroy
    cancerous cells.
  • Our goal numerical study of phase change
    problems with an accurate prediction of the
    liquid-solid interface.

7
  • Stefans problem

8
Enthalpy vs temperature
Enthalpy
Temperature
9
Enthalpy formulation
  • Introducing the enthalpy H as a function of T
  • H-T formulation

10
Vertical interface
11
Vertical interface
Enthalpy at t1
Temperature at t1
12
Enthalpy and semi-phase-field
where
13
Semi-phase-field formulation
  • formulation
  • Initial and (time-dependent) boundary conditions

14
Weak formulation
  • Implicit Euler
  • Find and
    such that

15
Vertical interface
Regular mesh
16
Mesh adaptation
  • Difficult to capture the freezing interface on a
    uniform mesh
  • In 3D, the number of elements necessary is huge
  • The position of the interface evolves with time
  • Time-dependent mesh adaptation

17
Mesh adaptation
  • 2D
  • Hierarchical error estimator
  • From a numerical solution of degree k, find a
    correction of degree k1
  • 3D
  • Definition of a solution dependent metric
  • Valid only for linear solution
  • Error related to the Hessian matrix

18
Time dependent mesh adaptation
  • Starting from on mesh
  • Solve the system on mesh to obtain a
    first approximation
  • Adapt the mesh on and
  • to get mesh
  • Reinterpolate on mesh
  • Solve the system on mesh to get the
    solution

19
Vertical interface
Adapted meshes
20
Oscillating cylinder (2D)
21
Oscillating cylinder
Initial mesh
Adapted meshes
8192 elements
around 3000 elements
22
Analytical and numerical solutions
23
Formation of a cusp
24
Formation of a cusp
Adaptation on
Adaptation on and
25
Formation of a cusp
26
Oscillating source problem
27
Oscillating source problem
Adaptation en
Adaptation en et
28
Oscillating source problem
29
Oscillating sphere
30
Oscillating sphere (3D)
Exact (red) and numerical (blue) solutions
31
Formation of a cusp (3D)
32
Cusp regular meshes
279936 elements
105456 elements
584016 elements
2239488 elements
33
Cusp adapted meshes
Adaptation on only
28 945 elements
Adaptation on
92 973 elements
34
Source problem
35
Rectal protection during prostate cryosurgery
J.C. Bischof et Al, Cryobiology (1997)
36
Rectal protection during prostate cryosurgery
J.C. Bischof et Al, Cryobiology (1997)
37
Liver cryosurgery
J.C. Bischof et Al, Cryobiology (1997)
38
Liver cryosurgery
39
Liver cryosurgery
40
Conclusions
  • The semi-phase-field formulation gives good
    results for phase change problems in 1D, 2D and
    3D problems
  • Even better results when combined with mesh
    adaptation
  • Mesh adaptation is necessary to obtain very
    accurate results both for 2D and 3D problems
  • Our adaptive strategy is completely general and
    not specific to phase change problems

41
Vertical interface
Mixed formulation
One-equation formulation
42
Vertical interface
Mixed formulation
One-equation formulation
43
  • Solution analytique oscillation du cercle
  • Nouvelle séquence dadaptation
  • Raffinement des arêtes,
  • Déraffinement des arêtes,
  • Retournement des arêtes,
  • Déplacement des sommets.
  • Une seule adaptation pour chaque pas de temps.
  • On adapte le maillage suivant
Write a Comment
User Comments (0)
About PowerShow.com