Title: Youssef Belhamadia et Andr Fortin
1 Modélisation Numérique des problèmes de
Cryochirurgie INRIA 2003, Paris
- Youssef Belhamadia et André Fortin
- GIREF
2Liver cryosurgery
3Prostate cryosurgery
J.C. Bischof et Al, Cryobiology (1997)
4Cryosurgery
5Plan
- Introduction
- Stefans problem
- Enthalpy and semi-phase-field formulations
- Weak formulation
- Adaptive strategy
- Numerical results 2D
- Analytical solution
- Formation of a cusp
- Oscillating source problem
- Numerical results 3D
- Oscillating sphere
- Formation of a cusp
- Oscillating source problem
- Applications to cryosurgery
- Conclusions
6Introduction
- Motivation of this work part of a large project
on cryosurgery (SKALPEL-ITC) - Idea insert cryoprobes in a tumor. The
freezing-thawing (phase change) will destroy
cancerous cells. - Our goal numerical study of phase change
problems with an accurate prediction of the
liquid-solid interface.
7 8Enthalpy vs temperature
Enthalpy
Temperature
9Enthalpy formulation
- Introducing the enthalpy H as a function of T
- H-T formulation
10Vertical interface
11Vertical interface
Enthalpy at t1
Temperature at t1
12Enthalpy and semi-phase-field
where
13Semi-phase-field formulation
- formulation
- Initial and (time-dependent) boundary conditions
14Weak formulation
- Implicit Euler
- Find and
such that
15Vertical interface
Regular mesh
16Mesh adaptation
- Difficult to capture the freezing interface on a
uniform mesh - In 3D, the number of elements necessary is huge
- The position of the interface evolves with time
- Time-dependent mesh adaptation
17Mesh adaptation
- 2D
- Hierarchical error estimator
- From a numerical solution of degree k, find a
correction of degree k1 - 3D
- Definition of a solution dependent metric
- Valid only for linear solution
- Error related to the Hessian matrix
18Time dependent mesh adaptation
- Starting from on mesh
- Solve the system on mesh to obtain a
first approximation - Adapt the mesh on and
- to get mesh
- Reinterpolate on mesh
- Solve the system on mesh to get the
solution -
19Vertical interface
Adapted meshes
20Oscillating cylinder (2D)
21Oscillating cylinder
Initial mesh
Adapted meshes
8192 elements
around 3000 elements
22Analytical and numerical solutions
23Formation of a cusp
24Formation of a cusp
Adaptation on
Adaptation on and
25Formation of a cusp
26Oscillating source problem
27Oscillating source problem
Adaptation en
Adaptation en et
28Oscillating source problem
29Oscillating sphere
30Oscillating sphere (3D)
Exact (red) and numerical (blue) solutions
31Formation of a cusp (3D)
32Cusp regular meshes
279936 elements
105456 elements
584016 elements
2239488 elements
33Cusp adapted meshes
Adaptation on only
28 945 elements
Adaptation on
92 973 elements
34Source problem
35Rectal protection during prostate cryosurgery
J.C. Bischof et Al, Cryobiology (1997)
36Rectal protection during prostate cryosurgery
J.C. Bischof et Al, Cryobiology (1997)
37Liver cryosurgery
J.C. Bischof et Al, Cryobiology (1997)
38Liver cryosurgery
39Liver cryosurgery
40Conclusions
- The semi-phase-field formulation gives good
results for phase change problems in 1D, 2D and
3D problems - Even better results when combined with mesh
adaptation - Mesh adaptation is necessary to obtain very
accurate results both for 2D and 3D problems - Our adaptive strategy is completely general and
not specific to phase change problems
41Vertical interface
Mixed formulation
One-equation formulation
42Vertical interface
Mixed formulation
One-equation formulation
43- Solution analytique oscillation du cercle
- Nouvelle séquence dadaptation
- Raffinement des arêtes,
- Déraffinement des arêtes,
- Retournement des arêtes,
- Déplacement des sommets.
- Une seule adaptation pour chaque pas de temps.
- On adapte le maillage suivant