Title: Resolution based Rules for the Weighted MaxSAT problem
1Resolution based Rules for the Weighted Max-SAT
problem
- Federico Heras and Javier Larrosa
2Overview
- Max-SAT Given a set of weighted clauses, find an
assignment of the variables such that the sum of
the weights of the violated clauses is minimized. - Complexity NP-Hard.
3Overview
- Applications
- Recent Algorithms
- Max-Cut
- Max-Clique
- Bayesian Networks
- Combinatorial Auctions
- Binate Covering Problem
- ...
- de Givry et al. CP03
- Shen and Zhang AAAI04
- Xing and Zang CP04
- de Givry et al. IJCAI05
- Alsinet et al SAT05
- Li et al CP05
4Previous Work
- Our previous work
- Larrosa Heras IJCAI 05
- Extension of DPLL to Max-SAT.
- Extension of Resolution to Max-SAT.
- Heras Larrosa AAAI06
- Inference rules based on Resolution Rule for
Max-SAT. Their combination produces an efficient
Max-SAT solver.
5New Contributions
- We generalize previous rules Heras Larrosa
AAAI06. - We proppose new ones envolving hard and soft
clauses.
6Outline
- Preliminaries
- Max-SAT Search
- Max-SAT Inference
- Inference Rules
- Experimental Results
- Conclusions and Future Work
7Max-SAT Notation
- x, y, z, boolean variables
- l, literal (positive or negative var.)
- A,B,C, clauses (set of literals)
- ? empty clause
- (C,u), weighted clauses
- (?,w) empty clause (Lower Bound)
- T maximum weight (Upper Bound)
- Negation ((l v C),w) ? (l v C,w), (C,w)
8Outline
- Preliminaries
- Max-SAT Search
- Max-SAT Inference
- Inference Rules
- Experimental Results
- Conclusions and Future Work
9Max-SAT Search
- Function Max-DPLL(F, T) nat
- FInference(F)
- if (?, T)? F then ret T
- if FØ then ret 0
- if F(?, w) then ret w
- l SelectLiteral(F)
- vMax-DPLL(Fl, T)
- vMax-DPLL(Fl,v)
- ret v
Larrosa Heras IJCAI 05
10Outline
- Preliminaries
- Max-SAT Search
- Max-SAT Inference
- Inference Rules
- Experimental Results
- Conclusions and Future Work
11Weighted Resolution (Max-RES)
Clashing clauses
(A ? B,m),(x ? A,u-m), (x ? B, w-m), (x ? A ?
B,m), (x ? A ? B,m)
(x ? A,u), (x ? B,w)
?
(where mminu,w)
12Weighted Resolution (Max-RES)
Clashing clauses
(A ? B,m),(x ? A,u-m), (x ? B, w-m), (x ? A ?
B,m), (x ? A ? B,m)
Resolvent
(x ? A,u), (x ? B,w)
Posterior clashing clauses
?
Compensation clauses
(where mminu,w)
13Weighted Resolution (Max-RES)
Clashing clauses
(A ? B,m),(x ? A,u-m), (x ? B, w-m), (x ? A ?
B,m), (x ? A ? B,m)
Resolvent
(x ? A,u), (x ? B,w)
Posterior clashing clauses
?
Compensation clauses
(where mminu,w)
Introduced in Larrosa Heras IJCAI 05
Completeness proved in Bonet Levy Manyà SAT
06
14Outline
- Preliminaries
- Max-SAT Search
- Max-SAT Inference
- Inference Rules
- Experimental Results
- Conclusions and Future Work
15Inference Rules
- Simplification rules
- 1 Step of resolution NRES and DRES.
- Hyper-Resolution 2-RES and Chain-RES and
Hard-RESa and Hard-RESb. - They simplify the problem
- Reduce the clauses arity.
- Increase the lower bound.
- Create new unit clauses.
16Neighborhood Resolution
(A,m),(x ? A,u-m), (x ? A, w-m)
(x ? A,u), (x ? A,w) ?
(where mminu,w)
17Neighborhood Resolution
(A,m),(x ? A,u-m), (x ? A, w-m)
(x ? A,u), (x ? A,w) ?
(where mminu,w)
Example
(x ? y ? z,1), (x ? y ? z,1)
(y ? z,1)
?
18Directional Resolution DRES
(x,u-m),(x ? y,w-m),(x v y, m),(y,m)
(x,u),(x ? y,w)
?
(where mminu,w) , x lt y
19Directional Resolution DRES
(x,u-m),(x ? y,w-m),(x v y, m),(y,m)
(x,u),(x ? y,w)
?
(where mminu,w) , x lt y
Example
(x ? y,1), (x,1)
(x ? y,1), (y,1)
?
20Hyper-Resolution 2-RES
(x ? y,u-m),(x ? z,w-m),(y ?
z,v-m),(x,m),(x v y v z,m),(x v y v z,m)
(x ? y,u),(x ? z,w),(y v z,v)
?
21Hyper-Resolution 2-RES
(x ? y,u-m),(x ? z,w-m),(y ?
z,v-m),(x,m),(x v y v z,m),(x v y v z,m)
(x ? y,u),(x ? z,w),(y v z,v)
?
Example
(x ? y,1), (x v z,1), (y v z,1)
(x,1), (x v y v z,1), (x v y v z,1)
(x v z,1), (x v z,1),(x v y v z,1)
?
?
22Hyper-Resolution Chain-RES
(l0,w0 - m), (l1,w2 - m), (l0 v l1,w1 - m), (l0
v l1,m), (?,m)
(l0,w0), (l0 v l1,w1), (l1 ,w2)
?
(where mminw0,...,w2) and 2 steps of resolution
23Hyper-Resolution Chain-RES
(l0,w0 - m), (l1,w2 - m), (l0 v l1,w1 - m), (l0
v l1,m), (?,m)
(l0,w0), (l0 v l1,w1), (l1 ,w2)
?
(where mminw0,...,w2) and 2 steps of resolution
Example
(x ? y,1), (x,1),(y,1)
(x ? y,1), (y,1),(y,1)
(x ? y,1), (?,1)
?
?
24Hyper-Resolution Chain-RES
(l0,w0 - m), (l2,w3 - m), (l0 v l1,w1 - m),
(l1 v l2,w2 - m), (l0 v l1,m), (l1 v
l2,m), (?,m)
(l0,w0), (l0 v l1,w1), (l1 v l2,w2), (l2 ,w3)
?
(where mminw0,...,w3) and 3 steps of resolution
25Hyper-Resolution Chain-RES
(l0,w0 - m), (l3,w4 - m), (l0 v l1,w1 - m),
(l1 v l2,w2 - m), (l2 v l3,w3 - m), (l0 v
l1,m), (l1 v l2,m), (l2 v l3,m), (?,m)
(l0,w0), (l0 v l1,w1), (l1 v l2,w2), (l2 v
l3,w3), (l3 ,w4)
?
(where mminw0,...,w3) and 4 steps of resolution
26Hyper-Resolution Chain-RES
(l0,w0 - m), (li-1 v li,wi - m) 1ltiltk (lk
,wk1 - m), (li-1 v li,m) 1ltiltk (?,m)
(l0,w0), (li-1 v li,wi) 1ltiltk (lk ,wk1)
?
(where mminw0,...,wk) and k1 steps of
resolution
Extension of the 3-RES presented in Heras
Larrosa AAAI06
27Example
(?,1), (x,2), (x v y,2), (y v z,3),(z v w,2)
(w,2)
28Example
(?,1), (x,2), (x v y,2), (y v z,3),(z v w,2)
(w,2)
4 steps of resolution
(?,3), (x v y,2), (y v z,2), (y v z,1), (z v
w,2)
29Resolution with hard clauses
- Compensation clauses subsumed by hard clauses
Hard-RESa and Hard-RESb. - Bin(l1,l2,,lk) specifies that at most one
literal in l1,l2,,lk is set to false.
(l1 ? l2,T), (l1 ? l3,T),, (l1 ?
lk,T), (l2 ? l3,T), (l2 ? l4,T),, (l2 ?
lk,T), , (lk-1 ? lk,T)
Bin(l1,l2,..,lk)
30Hyper-Resolution Hard-RESa
(l1 v l2 v v lk,T), Bin(l1,l2,,lk), (l1,u1-m),
(l2,u2-m), (lk,uk,-m) (?,m)
(l1 v l2 v v lk,T), Bin(l1,l2,,lk), (l1,u1), (l
2,u2), (lk,uk)
?
(where mminu1,...,uk) and k steps of resolution
It increases the lower bound
31Hyper-Resolution Hard-RESb
(l1 v l2 v v lk,T), Bin(l1,l2,,lk), (h v
l1,u1-m), (h v l2,u2-m), (h v lk,uk,-m) (h,m)
(l1 v l2 v v lk,T), Bin(l1,l2,,lk), (h v
l1,u1), (h v l2,u2), (h v lk,uk)
?
(where mminu1,...,uk) and k steps of resolution
It creates new unit clauses
32Outline
- Preliminaries
- Max-SAT Search
- Max-SAT Inference
- Inference Rules
- Experimental Results
- Conclusions and Future Work
33Experimental Results
- Benchmarks
- State-of-the-art solvers
- Max-CUT
- Max-2-SAT
- Max-CSP (direct encoding)
- Shen and Zhang AAAI04
- Xing and Zang CP04
- de Givry et al. IJCAI05
- Li et al CP05
34Experimental Results
MAX-CUT 2-RES
35Experimental Results
MAX-2-SAT 2-RES and Chain-RES
36Experimental Results
WCSP Hard-RESa and Hard-RESb.
37Outline
- Preliminaries
- Max-SAT Search
- Max-SAT Inference
- Inference Rules
- Experimental Results
- Conclusions and Future Work
38Conclusions and Future Work
- We have propposed new inference rules for the
Weighted Max-SAT problem. - We plan to Extend SAT techniques to Max-SAT
- Clause learning.
- Restarts.