The Model Evolution Calculus - PowerPoint PPT Presentation

1 / 48
About This Presentation
Title:

The Model Evolution Calculus

Description:

Recent research in propositional satisfiability (SAT) has been ... Disconnection method [Billon], [Letz, Stenz], - Hyper Tableaux Next Generation [Baumgartner] ... – PowerPoint PPT presentation

Number of Views:35
Avg rating:3.0/5.0
Slides: 49
Provided by: CS021
Category:

less

Transcript and Presenter's Notes

Title: The Model Evolution Calculus


1
The Model Evolution Calculus
  • Peter Baumgartner, MPI Saarbruecken and U Koblenz
  • Cesare Tinelli, U Iowa

2
Background
  • Recent research in propositional satisfiability
    (SAT) has been very successful.
  • An effective method for SAT was pioneered by
    Davis, Putman, Logemann, and Loveland (DPLL).
  • The best modern SAT solvers (MiniSat, zChaff,
    Berkmin,) are based on DPLL.

3
The DPLL Procedure Main Idea
assert p T
4
The DPLL Procedure Main Idea
assert p T
assert q F
5
The DPLL Procedure Main Idea
assert p T
assert q F
guess r T
6
The DPLL Procedure Main Idea
assert p T
assert q F
guess r T
contradiction!
7
The DPLL Procedure Main Idea
assert p T
assert q F
guess r F
satisfiable!
8
Correctness of DPLL method
Prop. A formula ? is satisfiable iff there is a
sequence of guesses such that DPLL(?) ?
9
Research Questions
  • Can we lift DPLL to the first-order level?
  • Can we combine successful SAT techniques (unit
    propagation, backjumping, learning,) with
    successful first-order techniques (unification,
    subsumption, ...)?

10
Previous Work
  • Instance based methods- (O)SHL Plaisted, -
    Disconnection method Billon, Letz, Stenz,-
    Hyper Tableaux Next Generation Baumgartner,-
    Primal/Dual approach Hooker et al, -
    Ganzinger-Korovin method
  • First-Order DPLL Baumgartner- proper lifting
    of split rule

11
This Work
  • The Model Evolution Calculus
  • First-Order DPLL
  • DPLLs simplification rules
  • Universal variables
  • The calculus is a direct lifting of the whole
    DPLL to the first-order level.

12
Overview
  • The DPLL method as a sequent-style calculus
  • A model generation view of DPLL
  • The Model Evolution calculus as a lifting of the
    DPLL calculus
  • Properties of the ME calculus
  • Further Work

13
The DPLL Calculus
14
The DPLL Calculus
15
The DPLL Calculus
16
The DPLL Calculus (cont.)
17
The DPLL Calculus Key Insight
? can be seen as a finite representation of a
Herbrand interpretation
If I? does not satisfy ?, repair it by adding
literals to ?
18
Some Notation
Examples
19
The DPLL Calculus RevisitedA Model Evolution
View
20
The DPLL Calculus RevisitedA Model Evolution
View
Note
21
The DPLL Calculus RevisitedA Model Evolution
View
22
Lifting DPLL to First Order Logic
  • Main questions
  • How to use contexts to represent a FOL Herbrand
    interpretation
  • What is a contradictory context
  • How to check
  • How to check
  • How to repair an interpretation

23
First-order Contexts
  • Sets ? of parametric literals L(u,v,..) and
  • universal literals L(x,y,)
  • parameters (u,v, ) and variables (x,y,) both
    stand for ground terms
  • (roughly) a parametric literal L in ? denotes all
    of its ground instances, unless
    ?L?? for some instance L of L
  • a universal literal denotes all of its ground
    instances, unconditionally

24
First-order Contexts Examples
? p(u,v)
p(u,v)
  • ? produces every instance of p(u,v)

25
First-order Contexts Examples
? p(u,v), ?p(u,u)
p(u,v)
?p(u,u)
  • ? produces every instance of p(u,v) except the
    instances of p(u,u)
  • ? produces every instance of ?p(u,u)

26
First-order Contexts Examples
? p(u,v), ?p(u,u), p(f(u),f(u))
p(u,v)
?p(u,u)
p(f(u),f(u))
27
First-order Contexts Examples
? ?p(f(u),v), p(u,g(v))
OK
?p(f(u),v)
p(u,g(v))
p(f(u),g(v))
28
First-order Contexts Examples
? ?p(f(u),v), p(u,g(v)), p(b,g(v))
OK
?p(f(u),v)
p(u,g(v))
p(b,g(v))
29
First-order Contexts Examples
? ?p(u,v), p(u,v)
Not OK! Contradictory
?p(u,v)
p(u,v)
30
First-order Contexts Examples
? p(u,v), ?p(x,x)
p(u,v)
?p(x,x)
? produces every instance of ?p(x,x) with no
possible exceptions
31
First-order Contexts Examples
? p(u,v), ?p(x,x), p(f(u),f(u)
Not OK! Contradictory
p(u,v)
?p(x,x)
p(f(u),f(u))
32
Initial Context
? ?v
?v
  • Lambda produces no positive literals
  • Well consider only extensions of ?v

33
Contexts and Interpretations
Let ? be a non-contradictory context with
parametric literals and universal literals ?
denotes a Herbrand interpretation
34
Checking
  • ? is called a context unifier (of the clause
    against ?)

35
Checking
  • Example
  • I?p(u,v) ?(p(x,y) ? p(x,x))
  • equivalently, match p(x,y), p(x,x) against
    p(,)

36
The Model Evolution CalculusSemantical View
Exactly the same as in DPLL!
37
The Model Evolution CalculusSemantical View
38
The Split Rule Example
First, identify falsified clause instance
Now, split with abs(x)u ?abs(c)u
Clauses xy ? yx abs(x)0
?(xy) ? ?(yz) ? (xz)
Context abs(x)0 vu ?v
?(abs(x)0) ? ?(0u) ? (abs(x)u)
? admissible context unifier
39
Example
abs(u)a ? abs(x)a, ...
abs(x)a, abs(u)a ? abs(x)a, ...
abs(x)a ? abs(x)a, ...
abs(x)a ? ?abs(f(x))a ? p(x), ...
abs(x)a ? p(x), ...
40
Further Notions
  • Derivation tree
  • Exhausted/closed branch
  • Derivation/refutation
  • Limit tree
  • Fair limit tree/derivation

41
Main Results Completeness
42
Main Results Soundness and Completeness
43
Main Results Proof Convergence
44
Making ME Efficient
Well-known DPLL improvements
  • Literal selection strategies Model
    Elimination can exploit dont care
    nondeterminism for remainer literal to split
    on
  • Learning (lemma generation) not trivial
    future work
  • Intelligent backtracking (backjumping)

45
Backjumping
46
Backjumping
L not used to close left subtree
47
Conclusions
  • Full lifting of DPLL achieved
  • Properties of DPLL preserved
  • sound and complete
  • proof convergent
  • simplification rules
  • model generation paradigm
  • (no Commit rule as in FDPLL)
  • Abstract framework
  • Wide range for fair strategies
  • Semantically justified redundancy criteria

48
Further Work
  • Implement the calculus! (in progress)
  • Lift DPLL optimizations (backjumping, lemma
    generation, )
  • Add equality
  • Study decidable fragments
  • Add nonmonotonic features
  • Build-in theories
  • ...
Write a Comment
User Comments (0)
About PowerShow.com