Title: Unit 8 Combination Circuits
1Unit 8 Combination Circuits
- Objectives
- Define a combination circuit.
- List the rules for parallel circuits.
- List the rules for series circuits.
- Solve for combination circuit values.
2Unit 8 Combination Circuits
- Characteristics
- There are multiple current paths.
- Resistors may be in series or parallel with other
resistors. - A node is where three or more paths come
together. - The total power is the sum of the resistors
power.
3Unit 8 Combination Circuits
- A simple combination circuit.
4Unit 8 Combination Circuits
- Solving Combination Circuits
E1 ? V I1 ? A R1 325 ?
E3 ? V I3 ? A R3 150 ?
E ? V I 1 A R ? ?
E2 ? V I2 ? A R2 275 ?
E4 ? V I4 ? A R4 250 ?
5Unit 8 Combination Circuits
- Series Circuit Rules
- The current is the same at any point in the
circuit. - The total resistance is the sum of the individual
resistances. - The sum of the voltage drops or the individual
resistors must equal the applied (source)
voltage.
6Unit 8 Combination Circuits
- Parallel Circuit Rules
- The voltage across any circuit branch is the same
as the applied (source) voltage. - The total current is the sum of the current
through all of the circuit branches. - The total resistance is equal to the reciprocal
of the sum of the reciprocals of the branch
resistances.
7Unit 8 Combination Circuits
- Simplifying the Circuit
- Resistors in series can be combined to form an
equivalent resistance. - Resistors in parallel can be combined to form an
equivalent resistance. - The equivalent resistances are used to draw
simplified equivalent circuits. -
8Unit 8 Combination Circuits
- Reducing Combination Circuits
- Combine R1 R2, and R3 R4.
R3 150 ?
R1 325 ?
R ? ?
R4 250 ?
R2 275 ?
9Unit 8 Combination Circuits
- Reducing Combination Circuits
- Redraw simplified circuit.
- R1 R2 R12 600 ohms
- R3 R4 R34 400 ohms
R12 600 ?
R34 400 ?
R ? ?
10Unit 8 Combination Circuits
- Solving Combination Circuits
- Solve for the applied voltage using Ohms law.
- Note that the I(total) was given data.
- E(source) I(total) x R(total) 1 x 240 240 V
E 240 V I 1 A R 240 ?
R12 600 ?
R34 400 ?
11Unit 8 Combination Circuits
- Solving Combination Circuits
- Solve for the branch currents using Ohms law.
- E(source) E12 E34
- I12 E12 / R12 240/600 0.4 A
E 240 V I 0.4 A R12 600 ?
E 240 V I 1 A R 240 ?
R34 400 ?
12Unit 8 Combination Circuits
- Solving Combination Circuits
- Solve for the branch currents using Ohms law.
- E(source) E12 E34
- I34 E34 / R34 240/400 0.6 A
E12 240 V I 0.4 A R12 600 ?
E34 240 V I 0.6 A R34 400 ?
E 240 V I 1 A R 240 ?
13Unit 8 Combination Circuits
- Solving Combination Circuits
- Expand the circuit back to the original circuit.
- Branch currents remain the same.
E1 ? V I1 0.4 A R1 240 ?
E3 ? V I3 0.6 A R3 240 ?
E 240 V I 1 A R 240 ?
E4 ? V I4 0.6 A R4 240 ?
E2 ? V I2 0.4 A R2 240 ?
14Unit 8 Combination Circuits
- Solving Combination Circuits
- Solve for each voltage drop using Ohms law.
- E1 I1 x R1 0.4 x 325 130 V
E1 130 V I1 0.4 A R1 325 ?
E3 ? V I3 0.6 A R3 150 ?
E 240 V I 1 A R 240 ?
E4 ? V I4 0.6 A R4 250 ?
E2 ? V I2 0.4 A R2 275 ?
15Unit 8 Combination Circuits
- Solving Combination Circuits
- Solve for each voltage drop using Ohms law.
- E2 I2 x R2 0.4 x 275 110 V
E1 130 V I1 0.4 A R1 325 ?
E3 ? V I3 0.6 A R3 150 ?
E 240 V I 1 A R 240 ?
E4 ? V I4 0.6 A R4 250 ?
E2 110 V I2 0.4 A R2 275 ?
16Unit 8 Combination Circuits
- Solving Combination Circuits
- Solve for each voltage drop using Ohms law.
- E3 I3 x R3 0.6 x 150 90 V
E1 130 V I1 0.4 A R1 325 ?
E3 90 V I3 0.6 A R3 150 ?
E 240 V I 1 A R 240 ?
E4 ? V I4 0.6 A R4 250 ?
E2 110 V I2 0.4 A R2 275 ?
17Unit 8 Combination Circuits
- Solving Combination Circuits
- Solve for each voltage drop using Ohms law.
- E4 I4 x R4 0.6 x 250 150 V
E1 130 V I1 0.4 A R1 325 ?
E3 90 V I 3 0.6 A R3 150 ?
E 240 V I 1 A R 240 ?
E4 150 V I4 0.6 A R4 250 ?
E2 110 V I2 0.4 A R2 275 ?
18Unit 8 Combination Circuits
- Kirchhoffs Laws
- The algebraic sum of the voltage sources and
voltage drops in a closed circuit must equal
zero. This law states that the sum of the voltage
drops in a series circuit must equal the applied
voltage. - The algebraic sum of the current entering and
leaving a point must equal zero. The second law
is for parallel circuits and states that the
total current is the sum of all the branch
currents.
19Unit 8 Combination Circuits
- Solving Combination Circuits Review
E1 ? V I1 ? A R1 325 ?
E3 ? V I3 ? A R3 150 ?
E ? V I 1 A R ? ?
E2 ? V I2 ? A R2 275 ?
E4 ? V I4 ? A R4 250 ?
20Unit 8 Combination Circuits
- Solving Combination Circuits Review
- Combine R1 R2, and R3 R4
R3 150 ?
R1 325 ?
R ? ?
R4 250 ?
R2 275 ?
21Unit 8 Combination Circuits
- Solving Combination Circuits Review
- Redraw simplified circuit.
- R1 R2 R12 600 ohms
- R3 R4 R34 400 ohms
R12 600 ?
R34 400 ?
R ? ?
22Unit 8 Combination Circuits
- Solving Combination Circuits Review
- Solve for the applied voltage using Ohms Law.
- Note that the I(total) was given data.
- E(source) I(total) x R(total) 1 x 240 240 V
E 240 V I 1 A R 240 ?
R12 600 ?
R34 400 ?
23Unit 8 Combination Circuits
- Solving Combination Circuits Review
- Solve for the branch currents using Ohms law.
- E(source) E12 E34
- I12 E12 / R12 240/600 0.4 A
E 240 V I 1 A R 240 ?
E 240 V I 0.4 A R12 600 ?
R34 400 ?
24Unit 8 Combination Circuits
- Solving Combination Circuits Review
- Solve for the branch currents using Ohms law.
- E(source) E12 E34
- I34 E34 / R34 240/400 0.6 A
E 240 V I 1 A R 240 ?
E12 240 V I 0.4 A R12 600 ?
E34 240 V I 0.6 A R34 400 ?
25Unit 8 Combination Circuits
- Solving Combination Circuits Review
- Expand the circuit back to the original circuit.
- Branch currents remain the same.
E1 ? V I1 0.4 A R1 240 ?
E3 ? V I3 0.6 A R3 240 ?
E 240 V I 1 A R 240 ?
E4 ? V I4 0.6 A R4 240 ?
E2 ? V I2 0.4 A R2 240 ?
26Unit 8 Combination Circuits
- Solving Combination Circuits Review
- Solve for each voltage drop using Ohms law.
- E1 I1 x R1 0.4 x 325 130 V
E1 130 V I1 0.4 A R1 325 ?
E3 ? V I3 0.6 A R3 150 ?
E 240 V I 1 A R 240 ?
E4 ? V I4 0.6 A R4 250 ?
E2 ? V I2 0.4 A R2 275 ?
27Unit 8 Combination Circuits
- Solving Combination Circuits Review
- Solve for each voltage drop using Ohms law.
- E2 I2 x R2 0.4 x 275 110 V
E1 130 V I1 0.4 A R1 325 ?
E3 ? V I3 0.6 A R3 150 ?
E 240 V I 1 A R 240 ?
E4 ? V I4 0.6 A R4 250 ?
E2 110 V I2 0.4 A R2 275 ?
28Unit 8 Combination Circuits
- Solving Combination Circuits Review
- Solve for each voltage drop using Ohms law.
- E3 I3 x R3 0.6 x 150 90 V
E1 130 V I1 0.4 A R1 325 ?
E3 90 V I3 0.6 A R3 150 ?
E 240 V I 1 A R 240 ?
E4 ? V I4 0.6 A R4 250 ?
E2 110 V I2 0.4 A R2 275 ?
29Unit 8 Combination Circuits
- Solving Combination Circuits Review
- Solve for each voltage drop using Ohms law.
- E4 I4 x R4 0.6 x 250 150 V
E1 130 V I1 0.4 A R1 325 ?
E3 90 V I3 0.6 A R3 150 ?
E 240 V I 1 A R 240 ?
E4 150 V I4 0.6 A R4 250 ?
E2 110 V I2 0.4 A R2 275 ?
30Unit 8 Combination Circuits
- Review
- The three rules for series circuits are
- The current is the same at any point in the
circuit. - The total resistance is the sum of the individual
resistances. - The applied voltage is equal to the sum of the
voltage drops across the individual components. -
31Unit 8 Combination Circuits
- Review
- The three rules for parallel circuits are
- The total voltage is the same as the voltage
across any branch. - The total current is the sum of the individual
currents. - The total resistance is the reciprocal of the sum
of the reciprocals of the branch resistances.
32Unit 8 Combination Circuits
- Review
- Combination circuits are circuits that contain
both series and parallel branches. - A node is where three or more paths come
together. - The total power is the sum of all the circuit
resistors power.
33Unit 8 Combination Circuits
- Review
- When solving combination circuits, simplify,
reduce, and redraw equivalent value circuits. - Apply the series rules and the parallel rules
selectively to various parts of the combination
circuit.