Title: Neutral Gas
1Neutral Gas Metals from z4 to z0.5
- Céline Péroux(European Southern
ObservatoryGermany)
2PLAN
- What are quasar absorbers?
- Evolution of the neutral gas mass
- The missing metals problem
- Absorbers as tracers of global metallicity
3PLAN
- What are quasar absorbers?
- Evolution of the neutral gas mass
- The missing metals problem
- Absorbers as tracers of global metallicity
4What are Quasar Absorbers?
Neutral gas HI -gt molecular hydrogen H2 -gt star
formation
5Damped Lyman-? Absorbers
log N(HI)gt20.3 cm-2
- Seen at all z
- Selected regardless of luminosity, morphology,
star formation rate - Physical properties well constrained N(HI),
metals, molecules, etc. - Major component of neutral gas
- Tracers of global metallicity
6Voigt Profile Fitting
7PLAN
- What are quasar absorbers?
- Evolution of the neutral gas mass
- The missing metals problem
- Absorbers as tracers of global metallicity
8(No Transcript)
9Neutral Gas in the Universe
STARS
NEUTRAL GAS
LOCAL GALAXIES
?HI(zlt2) poorly constrained
(Péroux, Dessauges, D'Odorico, Kim McMahon,
2005, MNRAS, 363, 479)
10PLAN
- What are quasar absorbers?
- Evolution of the neutral gas mass
- The missing metals problem
- Absorbers as tracers of global metallicity
11Expected Metal Production
- Star Formation History
- Product of mean stellar yield times integral of
star formation density - ?expltpgt? ?(t)
Expected metals
(Madau plot)
12Missing Metals Problem
z2.5
expected metals
?
metals
DLAs
- Observed metals 60 of expected metals
galaxies
Intergalactic medium
(Bouché, Lehnert Péroux, 2005, MNRAS, 364, 319
Bouché, Lehnert Péroux, 2006, MNRAS, 367L, 16
Bouché, Lehnert, Aguirre, Péroux Bergeron,
submitted)
13PLAN
- What are quasar absorbers?
- Evolution of the neutral gas mass
- The missing metals problem
- Absorbers as tracers of global metallicity
14Accurate Metallicity Measurements
- UVES/VLT ESO archives
- Zn traces total metallicity free from dust bias
(Péroux, Dessauges, D'Odorico, Kim McMahon,
2003b, MNRAS, 346, 1103)
15Metallicity versus N(HI)
- Sub-DLAs more metal rich?
(Péroux, Dessauges, D'Odorico, Kim McMahon,
2003b, MNRAS, 345, 480)
16Metallicity of sub-DLAs
- UVES/VLT
- abundances zgt3 sub-DLAs
(Péroux, Dessauges, D'Odorico, Kim McMahon, in
preparation)
17Metallicity of sub-DLAs
- measure Zn at zlt1
- ESO DDT
- Zn/H0.61
- super-solar quasar absorber
(Péroux, Meiring, Kulkarni, Ferlet, Khare,
Lauroesch, Vladilo York, 2006b, MNRAS, )
18A Metal-Rich Quasar Absorber
- Sub-DLAs better tracers of global metallicity?
- Mass difference?Obs bias?
(Péroux, Kulkarni, Meiring, Ferlet, Khare,
Lauroesch, Vladilo York, 2006a, AA, 450, 53)
19Dust Bias
- Extinction in HI regions in the Milky Way
(Vladilo Péroux, 2005, AA, 444, 461)
20Overcoming Dust Bias
- Need to probe lower HI column densities
down to N(HI)gt1019 gt
sub-DLAs
21Contribution of Absorbers to Missing Metals
Problem (z2.5)
- DLAs 5 of total amount of metals
- Neutral gas in sub-DLAs 1.3gt because
contribution to ?HI small - Ionised gas in sub-DLAs max of 13gt not
enough to close missing metals problem
22Conclusion
- Quasar absorbers trace the HI from which stars
form - Most of the metals expected in the Universe are
missing - Quasar absorbers are a cosmological tool allowing
accurate metallicity determination - Sub-DLAs might be more metal rich than classical
DLAs, possibly because of a lower dust content