Title: 5th Italian-Sino Workshop on Relativistic Astrophysics
1Intermittency of cosmic baryon fluid
Li-Zhi Fang
University of Arizona
???????????????
5th Italian-Sino Workshop on Relativistic
Astrophysics
26 May 1 June 2008, Teipei-Hualian
2collaborators
supported by
US NSF Ast-0506734 US NSF Ast-0507340
High Order Accurate Weighted Essentially
Non-Oscillatory (WENO) Algorithms with
Applications to Cosmological Hydrodynamic
Simulations
University of Arizona, Physics Li-Zhi Fang,
Ji-Ren Liu
Ping He
Yi Lu Brown University,
Applied Mathematics
Chi-Wang Shu
Jing-Mei
Qiu Purple Mountain Observatory, Long-Long
Feng, John Hopkins University Wei
Zheng
3turbulence and large scale structure
of the universe
(1757)
(1923)
(1941)
structure formation of the universe, 2007
4(No Transcript)
5quasar absorption spectrum HI absorption
6minihalo model of quasars Ly-alpha forests
- self-gravitating objects
- Bachall Salpeter 1965
- Black 1981
- pressure-confined clouds
- Sargent et al. 1980
- Ostriker 1988
- low mass object
-
- Bond, Szalay Silk 1988
- miniholes
-
- Rees 1986
- Murakami Ikeuchi 1993
7A
B
low mass object, pressure-confined
clouds, self-gravitating objects minihalo model
are incorrect
Lyman-alpha absorption clouds are
un-clustered, not virialized (1996)
Yi-Hu Fang et al 1996
8log-normal model
9QSO HP 170064
10(No Transcript)
11quasar HE 2347-4342
Zheng et al. 2004
12not thermal broadening
Zheng et al. 2004
13quasar HS 170064Ly-alpha transmittance flux
clusters
Jackhedkar, Zhan, Fang 2000
14PDF of
sigma
Lyman-alpha transmitted flux fluctuations
are highly non-Gaussian (2000)
Jackhedkar, Zhan, Fang 2000
15- non-thermal equilibrium
- not virialized objects
- not laminar flow
intermittency
16intermittency is the alternation of phases of
apparently periodic and chaotic dynamics.
Consider a dynamical system. Let x be the
observed variable. If x plotted as a function of
time exhibits segments of relative constant
values (laminar phase) interspersed by erratic
bursts, the system dynamics is intermittent.
17financial time series
clusters
Black Monday, October 1987
18intermittent distribution
random variables
random variable
PDF
19Probability Distribution Function (PDF)
N6
0.015
0
long tail
20dark matter (Newton)
gravity (Einstein)
baryon fluid (Navier-Stokes)
heating and cooling
21 structure formation growth mode
peculiar velocity is irrotational, or potential.
the dynamical equation of baryon gas is
stochastic force driven Burgers' equation or
KPZ equation
gravitational potential
Jeans diffusion
Berera, Fang, PRL (1994), Jeans, ApJ (1999),
Matarrese, Mohayaee, ApJ (2002) Feng, Pando,
Fang, ApJ, (2003)
22Burgers turbulence
Correlation length of random gravitational field
Jeans smoothing length
R gt 1 turbelence
Polyakov, PRE, (1995) Boldyrev, Linde, Polyakov,
PRL, (2004)
23scale free regime, hierarchical clusters fully
developed turbulence
Kolmogorov (1941)
statistically quasi-equilibrium state
structure function
24Gaussian field
self-similar field
intermittent field
25models of hierarchical clusters
- beta model
- linked-pair hierarchy
- hierarchical Gaussian fluctuation
(Press-Schechter theory) - lognormal model
- halo model
26beta model
radius
number of objects
Soneira, Peebles 1977
27test of beta model
p-dependence is linear. Not an intermittent
field.
28linked-pair hierarchical clustering
Q_n are constant
S. White 1979
Feng, Pando, Fang, 2001
29testing linked-pair hierarchical clustering
Feng, Pando, Fang, 2001
30hierarchical Gaussian fluctuation
(Press-Schechter model)
k-space
Bond, Cole, Efsthathiou, Kaiser 1991
31hierarchical clusters
hierarchical models based on randomly additional
process generally do not produce intermittent
field.
(central limitation theorem)
randomly multiplicational process
32testing of hierarchical Gaussian fluctuation
randomly multiplicational process
randomly additional process
Pando, Lipa, Greiner, Fang 1998
33halo model
mass fields are given by a superposition of the
halos on various scales, and therefore, all
non-Gaussian behaviors of the density field can
be described by a universal density profile
The halo-halo correlation function on scales
larger than the halo size is given by the two
point correlation function of the initially
linear Gaussian field.
34log-Poisson hierarchical model
Poisson random
Liu, Fang, 2008, Lu, Fang, 2008
35hierarchical clustering randomly multiplicative
process scale invariance, self-similarity translat
ional invariance infinite divisibility (the
difference r_1-r_2 can be finite or
infinitesimal)
mN
r_1
r_2
m1
m2
36Gaussian field
37structures
log-Poisson hierarchical
38tests of log-Poisson hierarchy
statistical properties
- Intermittent exponent
- beta-hierarchy
- high order moment
- scale-scale correlations
samples
mass density field of IGM, HI (simulation)
velocity field (simulation) Lyman-alpha
transmitted flux (simulation, observation) scaling
relations (simulation, observation)
He, Liu, Feng, Shu Fang, 2006 Zhang, Liu, Feng,
Fang, 2006 Liu, Fang 2008 Lu, Fang, 2008
39 She-Leveque formula
He, Liu, Feng, Shu, Fang, PRL, (2006)
40intermittent exponent of mass density field
Liu, Fang, ApJ, 2008
41beta- hierarchical
p-invariance
42beta-hierarchy
Liu, Fang, 2008
43beta-hierarchy of Lyman-alpha transmitted flux
Lu, Fang 2008
44scale-scale correlation
Lu Fang 2008
45lognormal vs. log-Poisson models
Lu, Fang 2008
46evolution of IGM fields (in scale free range)
linear regime
nonlinear regime