Title: Stability and Reactivity of Nicholas Carbocations
1Stability and Reactivity of Nicholas Carbocations
2Nicholas Carbocations
Experimetal evidence for charge delocalization
onto Co2(CO)6 moiety IR - Increase in carbonyl
stretching frequencies by 40-60 cm-1 relative
neutral complex. d(Co) ? ? (CO) 1H-NMR -
small downfield shift ?- alkyl groups 13C-NMR -
small downfield shift ?- alkyl groups
- resonances of CO ligands show small
shielding effects
3Isolation of Cations
K.M. Nicholas and R. Pettit, J. Organomet. Chem.,
1972, 44, C21
Asymmetric Propargylium Cations at Low
Temperatures
Padmana, S. Nicholas, K. M. J. Organomet. Chem.
1983, 268, 23.
4Depiction of Dicobalthexacarbonyl Systems
5Dynamic Behaviour
Schreiber et al., J. Am. Chem. Soc. 1987, 109,
5749
6Formation of Nicholas Carbocations
7Stability of Nicholas Carbocations
Schreiber et al., J. Am. Chem. Soc. 1987, 109,
5749
8Propargylium Cation Electrophilicity
Slightly less electrophilic -
dianisylmethylium ion Behave like
- Xanthylium ion
- Ferrocenylmethylium ion
Kuhn, O. Rau, D. Mayr, H. J. Am. Chem. Soc.
1998, 120, 900-907
9Reaction with nucleophiles
- Nucleophiles
- Hydride
- Nitrogen
- Oxygen
- Sulphur
- Fluoride
- 6. Carbon
- Alkenes
- Aromatics
- Enol derivatives
- (Syn selective for both E- Z- enolates)
- Ally metals
10Hydride
Hanaoka et al., J. Chem. Soc., Perkin Trans. 1
1995, 2849
11Nitrogen
Shunto, S., J. Med. Chem. 1998, 41, 3507.
Yeh, M. -C. P. Tetrahedron Lett. 1995, 36, 2823
12Oxygen
Martin, V. S. Tetrahedron Lett. 1995, 36, 3549.
Martin, V. S. Tetrahedron Lett. 1995, 36, 3549
Hanaoka, M. et al., Tetrahedron 2000, 56, 2203
13Sulfur
Went et al., J. Chem. Soc., Dalton Trans. 1993,
1857
Fluoride
Gree, Tetrahedron Lett. 1999, 40, 6399
14Carbon Alkenes
Krafft, J. Org. Chem., 1996, 61, 3912.
Tyrrell, J. Chem. Soc., Perkin Trans. 1 1998,
1427. Tyrrell, Tetrahedron Lett. 1997, 38, 685.
15Syntheis of Ingenane skeleton
Tanino et al., J. Org. Chem., 1997, 62, 3032
16Carbon Aromatics
Green, J. Chem. Soc., Chem. Commun. 1999, 2503
17Carbon Enol Derivatives (intermolecular)
- Reaction occurs through a synclinal transition
state
Schreiber et al., J. Am. Chem. Soc. 1987, 109,
5749
18Carbon Chiral enol ethers (intermolecular)
- Facial selectivity - that expected of a
noncoordinating electrophile - Diastereoslectivity - synclinal transition state
(syn isomer) - Intermediate cations racemize faster than
intermolecular alkylation - Cations react with different rates (kinetic
resolution)
Schreiber et al., J. Am. Chem. Soc. 1987, 109,
5749
19Intramolecular Reaction with Enolates
- Stereoselective
- (E) - cis-product
- (Z) - trans product
- Retention of ee suggests Nicholas Carbocation
- reacts faster than it racemizes (antarafacial
migration) - cf. Intermolecular addition
Carbery, Reignier, Miller and Harrity, J. Org.
Chem., 2003, 68, 4392.
20Enediyne Antibiotics
Magnus et al., J. Am. Chem. Soc., 1997, 119, 6739
2152 Cycloaddition reactions
Tanino, J. Am. Chem. Soc., 2000, 122, 6116.
Tanino, Org. Lett., 2002, 4, 2217
22Carbon Allyl
- Diastereoselectivity
- improves with steric bulk
- of both alkoxy group and
- remote propargylic moiety
- Syn form (benzyloxy and phenyl) most
- stable diastereomeric Nicholas carbocation
- Antarafacial migration of olefin ligand
- allows discrimination of enantio faces
Panek, Org. Lett., 2001, 3, 2439.
23Carbon Allyl
24Carbon Allyl
Diastereoselectivity explained by the
six-membered chelation transition state for allyl
metal additions to carbonyl compounds -
(E)- allyl boranes give the trans-dioxygenated
product - (Z)- allyl boranes give the
syn-dioxygenated product
Nicholas, J. Org. Chem., 1993, 58,
5587. Nicholas, J. Org. Chem., 1997, 62, 1737.
25Tandem use of Cobalt to Synthesize Trans-fused
5-5 ring system in ()-epoxydictymene
Schreiber, J. Am. Chem. Soc., 1997, 119, 4353
26Protecting group
Danishefsky, Org. Lett., 2004, 6, 413 Nicholas,
Tetrahedron Lett. 1971, 37, 3475
27Decomplexation of Cobalt
- Oxidative methods give parent alkyne
- Ferric nitrate
- Ceric ammonium nitrte or ceric sulphate
- Trimethylamine N-oxide
- N-morpholine N-oxide, often in conjuction with
1,4-cyclohexandiene - Tetrabutylammonium fluoride
- Sodium methanethiolate
- Pyridine
- Dimethylsulfoxide/water
- Reductive methods give alkenes
- Lithium in liquid ammonia
- Hydrogen over rhodium-charcoal catalyst
- Hydrogenation over Wilkinsons catalyst
- Tributyltin hydride
- Tributyltin hydride and NBS used in
1,4-cyclohexadiene - Triethylsilane or triphenylsilane- forms the
vinylsilane
28References
Teobald, B. J., Tetrahedron., 2002, 58,
4133-4170 Nicholas, K. M., Acc. Chem. Res. 1987,
20, 207-214 Green, J. R., Curr. Org. Chem. 2001,
5, 809-826 Went, M. J. Adv. Organomet. Chem. ,
1997, 41, 69-125 Fletcher, A. J. Christie, S.
D. R., J. Chem. Soc., Perkin Trans.1 2000,
1657-1668 Caffyn, A. J. M. Nicholas, K. M.
Comprehensive Organometallic Chemistry II A
Review of the Literrature 1982-1994, 14 Volume
set Abel, E. W., Stone, F. G. A., Wilkinson, G.,
Eds. Pergamon Oxford, 1995 Vol. 12, pp
685-702, Chapter 7.1