Title: Fast Imagebased Separation of Diffuse and Specular Reflections
1(No Transcript)
2Fast Image-based Separation of Diffuse and
Specular Reflections
- Bruce Lamond, Pieter Peers Paul Debevec
- University of Southern California
- Institute for Creative Technologies
3Introduction
- Problem Complex to model reflectance
- Specular highlights hamper geometry recovery
- Reflectance component separation useful for
- Image-based reflectance modeling
- Normal/geometry acquisition
4Overview
5Outline
- Related work
- Method
- Data capture
- Data processing
- Results extensions
- Conclusions further work
6Related work 1
- Specular-diffuse separation
- Sato et al. SIGGRAPH 1997
- Surface mesh perpendicular diffuse color
- Only 1 rough specular term recovered
7Related work 1
- Specular-diffuse separation
- Sato et al. SIGGRAPH 1997
- Surface mesh perpendicular diffuse color
- Only 1 rough specular term recovered
- Nayar et al. IJCV 1997
- Polarization (specular) color (diffuse)
- Not per pixel (spatial coherency)
8Related work 1
- Specular-diffuse separation
- Sato et al. SIGGRAPH 1997
- Surface mesh perpendicular diffuse color
- Only 1 rough specular term recovered
- Nayar et al. IJCV 1997
- Polarization (specular) color (diffuse)
- Not per pixel (spatial coherency)
- Debevec et al. SIGGRAPH 2000
- Colorspace analysis of per pixel reflectance
function - High-res but data intensive
9Related work 2
- Specular-diffuse separation
- Lin et al. ECCV 2002
- Separation/depth from multi-stereo
- Whole sequence required
10Related work 2
- Specular-diffuse separation
- Lin et al. ECCV 2002
- Separation/depth from multi-stereo
- Whole sequence required
- Mallick et al. ECCV 2006
- Transform to SUV space PDE erodes specularity
- Correct PDE/spatial coherency
11Related work 2
- Specular-diffuse separation
- Lin et al. ECCV 2002
- Separation/depth from multi-stereo
- Whole sequence required
- Mallick et al. ECCV 2006
- Transform to SUV space PDE erodes specularity
- Correct PDE/spatial coherency
- Ma et al. EGSR 2007
- High-res normal map from specularity few
parameters - Needs each light polarized
12Method Reflectance function
Images Debevec et al. SIGGRAPH 2000
13Method Reflectance function
discrete light source
discrete light source
Images Debevec et al. SIGGRAPH 2000
14Method Reflectance function
discrete light source
discrete light source
Images Debevec et al. SIGGRAPH 2000
15Method Reflectance function
function for 1 pixel
discrete light source
discrete light source
Images Debevec et al. SIGGRAPH 2000
16Method Reflectance function
function for 1 pixel
specular
discrete light source
discrete light source
diffuse
Images Debevec et al. SIGGRAPH 2000
17Method capture hardware
- Reflective Light Stage (Peers et al. USC ICT
Tech.Rep. 2006)
rough specular reflection
hemispherical dome
object
occluder
18Method Sharp specular reflectance function
19Method Sharp specular reflectance function
20Method Sharp specular reflectance function
21Method Sharp specular reflectance function
22Method High frequency lighting
23Method RLS capture illustration
24Method RLS capture illustration
25Method RLS capture illustration
26Method RLS capture illustration
27Method RLS capture illustration
28Method RLS capture illustration
29Method RLS capture illustration
30Method RLS capture illustration
31Method RLS capture illustration
32Method RLS capture illustration
33Method RLS capture illustration
34Method RLS capture illustration
35Method RLS capture illustration
36Method compare to related technique
- Nayar et al. SIGGRAPH 2006
37Method compare to related technique
- Nayar et al. SIGGRAPH 2006
direct
indirect
38Method compare to related technique
- Nayar et al. SIGGRAPH 2006
direct
indirect
39Method compare to related technique
- Nayar et al. SIGGRAPH 2006
direct
indirect
diffuse
Specular diffuse
40Method capturing a real object
41Method capturing a real object
1
42Method capturing a real object
2
43Method capturing a real object
3
44Method capturing a real object
4
45Method capturing a real object
Whole illumination (sum of stripes / 2)
46Method data processing result
specular
min
max
47Method data processing result
specular
min
max
specular
diffuse
max min
48Capturing a problematic real object
1
49Capturing a problematic real object
2
50Capturing a problematic real object
3
51Capturing a problematic real object
4
52Results
diffuse
specular (3 stops)
53Results highly diffuse case
54Results highly diffuse case
55Extension Image-based illumination
original image
stripe 1
56Extension Image-based illumination
original image
stripe 2
57Extension Image-based illumination
original image
stripe 3
58Extension Image-based illumination
original image
stripe 4
59Extension results
diffuse
specular
60Extension IBL and complex reflectance
61Extension IBL and complex reflectance
original image
stripe 1
62Extension IBL and complex reflectance
original image
stripe 2
63Extension IBL and complex reflectance
original image
stripe 3
64Extension IBL and complex reflectance
original image
stripe 4
65Extension results
diffuse
specular (3 stops)
66Extension 2 surface normals
67Extension 2 surface normals
68Extension 2 surface normals
69Summary
- Conclusion
- Fast image-based diffuse specular separation
- Technically easy to acquire
- Works for sharp specular diffuse objects
- Extends to image-based illumination
- Can be used to extract surface normals
- Further Work
- Investigate image-based modeling of reflectance
properties - More surface normals ground truth comparisons
70Acknowledgements
Tom Pereira, Bill Swartout, Scott Fisher, Randy
Hill, Randolph Hall, and Max Nikias for their
support and assistance with this work. This work
was sponsored by the University of Southern
California Office of the Provost and the U.S.
Army Research, Development, and Engineering
Command (RDECOM).