Title: Mechanism Analysis
1 Mechanism Analysis
2Links and their kinematic representation
3 Complex linkPin joint
4 Slider jointCam joint
5 Gear joint
6Kinematic diagram
7Kinematic diagram
8Grueblers Equation
9Grueblers Equation
10CompareGrueblers eqn degrees of freedom
3(links - 1) 2 jointsto degree of indet.
bars reactions 2 joints
11 examples
12 examples
13 examples
14 examples
15 examples
16 examples
17 counts as two joints!
18 examples
19 Exceptions
20 examples
21Four Bar Mechanism
22Grashofs Criterion s shortest, l longest,
p,q other two.Will have at least one revolving
link if s l p q
23 Grashofs Criterion
24Circuits
25Path
26Slider-CrankAnother verycommonmechanismwith
four links.
27Slider-Crank
28Vector addition andsubtraction
29Vector Equations
30Position analysis, four bar mechanism
31(No Transcript)
32(No Transcript)
33Two link position synthesisdesign a mechanism
that moves this link between these two positions
34Two link position synthesisthe case of limited
space using two pivot points (four bar mechanism
synthesis)
35Four bar mechanism synthesis to move a link
through three positions
36Velocity Analysisvelocity of a point, v
dR/dtangular velocity of a link, ?
d?/dtvelocity of a point on a rotating element,
v r?, where r is distance from center of
rotation to the point.
37Relative Velocity
38Relative Velocity, what is vb/a?
va
vb
39Relative Velocity, what is vb/a?
va
va
vb/a
vb
vb
velocity polygon
Relative velocity equation vb va vb/a
40What is the angular velocity of the link?
va
va
vb/a
vb
vb
41What is angular velocity of the link?
va
va
vb/a
vb
vb
L
From perspective of a, b is rotating about it
with velocity vb/a, at a distance L.
42What is angular velocity of the link?
va
va
vb/a
vb
vb
L
Since v r?, then ? v/r, or in this case, ?
va/b/L.
43Also note that relative velocity of two points on
a single link is always perpendicular to the link.
va
va
vb/a
vb
vb
L
44Draw velocity polygonto find velocity ofeach
joint and angularvelocity of each link.Assume
the crank isrotating at 120 rpm.
45Draw velocity polygonto find velocity ofeach
joint and angularvelocity of each link.Assume
the crank isrotating at 120 rpm.
46Draw velocity polygonto find velocity ofeach
joint and angularvelocity of each link.Assume
the crank isrotating at 120 rpm.
47 48 49 50 51What hydraulic cylinder speed is needed for 5
rad/min rotation of bed?
52What hydraulic cylinder speed is needed for 5
rad/min rotation of bed?
53(No Transcript)
54Velocity Image
55Instant Centers (of rotation)A link at any
instant intime appears to berotating about a
pointin space.Knowing instant centerlocations
will enable us todraw velocity diagramseasily.
56The instantaneous centeror rotation of link 3
w.r.t.the ground (link 1) islabeled 31. It is
identicalto 13 which is the apparent center
ofrotation of the groundfrom an observer
onlink 3.
57Where is instantcenter 23?34?How many
instantcenters are there?
58 12, 13, 14, 23, 24, 34
59PrimaryInstantCenters
60Locations of primary instant centers
61Kennedys TheoremFor example, links 1,2,3
have instant centers 12, 23, 13 thatall fall
along a single straight line.
62Locking Brace Example
63Instant Center Diagram a graphical tool for
locating all centers
64(No Transcript)
65Another Rock CrusherUse center diagram to
locateall instant centers
66 67Instant CenterDiagramProgression
68Final Instant CenterDrawing
69Drawing Velocity Images using Instant Centers
The velocities ofpoints on a rotatinglink are
proportionalto the distance fromthe pivot
point.Can be constructedwith just a ruler.
70Drawing Velocity Images using Instant Centers
- The instant center ab can be thought of as a
point attached to either body a or body b - The instant center serves as a transfer point
for velocities between bodies
71Example
72Given velocity at B,find velocityat C
73Acceleration Analysisv dR/dta dv/dt
v1
v1
v2
a1
v2
R1
R2
R3
74Acceleration AnalysisAcceleration of a point is
usually broken into two componentsTangential
accel, at, producingchange in velocity
magnitudeNormal accel, an, producingchange in
velocity direction.
v
at
path
an
75Acceleration AnalysisComplete description of
the motion of a link requires a description of
the motion of a point on the link, and the
rotational motion of the link about that
point.Angular position, ?Angular velocity, ?
d?/dtAngular acceleration, ? d?/dt
76Acceleration of a point on a rotating linkGiven
a point located on a rotating link a distance rpt
from the center of rotation, and the angular
velocity of the link, ?link, then atpt rpt
?link anpt vpt ?link anpt rpt ?link2
(since vpt rpt ?link) anpt vpt2 / rpt
(since ?link vpt/rpt)
77Find acceleration at end of input link. ? 25
rad/s ? 500 rad/s2
78Relative Acceleration anB atB anA atA
anB/A atB/A
79anC/B atC/B anC atC - anB - atB Given VB
12 in/s (up and to the left), ?crank 37 rad/s2
CCW
80(No Transcript)