Image Enhancement - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Image Enhancement

Description:

Others (e.g., negative, gray-level slicing, bit-plane slicing, zig-zag transform) ... Zig-zag: f(x,y) g(x,y) 0 b. n. Background compressed. Large range of gray scale ... – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 16
Provided by: liju4
Category:

less

Transcript and Presenter's Notes

Title: Image Enhancement


1
Image Enhancement
  • Gray level transformation
  • Linear transformation
  • Non-linear transformation (e.g., Logarithmic
    transformation)
  • Others (e.g., negative, gray-level slicing,
    bit-plane slicing, zig-zag transform)
  • Gamma correction
  • Histogram processing
  • Research Case Study
  • Demo

2
Gray level transformation
g(x,y)
Increase range of gray scale
Linear
n m
f(x,y)
0 a b
g(x,y)
Piece-wise linear
Depress noise
n m
f(x,y)
0 a b
3
Gray level transformation (contd)
g(x,y)
Logarithmic transform
Expand values of dark pixels To make the details
clear Compress the high level values
n
f(x,y)
0 n
g(x,y)
negative
n
f(x,y)
0 b
4
Gray level transformation (contd)
g(x,y)
Gray-scale slicing
Background compressed
n
f(x,y)
0 n
g(x,y)
Zig-zag
Large range of gray scale is displayed on the
small range device
n
f(x,y)
0 b
5
Gray level transformation (contd)
Bit-7
Bit-plane slicing
e.g., Range 0, 255 ? 0, 1 for each bit
1
Bit 7 . 1, 0
f(x,y)
0 255
Bit-7
Bit-0
6
Gray level transformation (contd)
Intensity (S r(2.5))
Gamma correction

The voltage-to-intensity response is non-linear,
so it is necessary to correct It into linear
response S r(gamma) Gamma 2.5 Gamma
correction S r(1/2.5) voltage ? ?
? intensity r(2.5)
r(0.4)
Voltage (r)
0
Intensity (S r(0.4))

Voltage (r)
0
7
Histogram processing
  • P(rk) is the probability of occurrence of gray
    level rk
  • P(rk) can be re-distributed for enhancing the
    image

h(rk) or P(rk)nk/n
h(sk) or P(sk)


rk
sk
0
0
Histogram equalization
8
Histogram processing (contd)
ST(r)
  • Histogram equalization
  • (1) s T(r) 0 ? r ? 1
  • (2) Ps(s) ds Pr(r) dr
  • (3) T(r) ?0r Pr(w)dw
  • From (1), (2) and (3), we get
  • Ps(s) 1

t sk
r
0 rk 1
P(r)
P(s)
s
r
Histogram equalization
9
Histogram processing (contd)
  • Histogram equalization
  • Analogue domain
  • s T(r) ?0r Pr(w)dw
  • (2) Discrete domain
  • K0, 1,, L
  • (e.g., L255 if 8bits/pixel)

10
Histogram processing (contd)
  • Histogram matching
  • -- We can also specify a certain histogram,
    then match it.

11
Histogram processing (contd)
  • Example of histogram equalization (HE)
  • -- 3bits/pixel
  • -- total number of pixel n51
  • gray level number of pixels number
    of pixel after HE
  • 0 10
    0
  • 1 8
    10
  • 2 9
    8
  • 3 2
    0
  • 4 14
    11
  • 5 1
    0
  • 6 5
    15
  • 7 2
    7

12
Histogram processing (contd)
  • Note
  • -- global histogram processing
  • -- local histogram processing
  • Bin (a group of successive gray levels)
  • -- e.g., 1 bin 2k (bin width)
  • -- If the total gray levels are 256, the
    number of bins 28 / 2k
  • -- if k4 the number of bins is 16

13
Moment
  • Moment
  • -- nth moment

Mean value (average)
n0 ? ?0 1 n1 ? ?1 0
14
Moment (contd)
  • Moment
  • -- variance of r (second moment)

Standard deviation
(average contrast)
15
Enhancement by arithmetic operation
  • Image subtraction
  • -- e.g., image difference between the
    images before and after the contrast agents
    injection in the radiology imaging.
  • N images averaging
  • -- time sequence
  • -- smoothing
  • -- noise removal
  • -- N? ? ?
  • -- is noise
Write a Comment
User Comments (0)
About PowerShow.com