Title: Statistics of weather fronts and modern mathematics
1Statistics of weather fronts and modern
mathematics
- Gregory Falkovich
- Weizmann Institute of Science
D. Bernard, A. Celani, G. Boffetta, S. Musacchio
Exeter, March 31, 2009
2(No Transcript)
3Euler equation in 2d describes transport of
vorticity
4Family of transport-type equations
m2 Navier-Stokes m1 Surface
quasi-geostrophic model, m-2 Charney-Hasegawa-Mi
ma model
Electrostatic analogy Coulomb law in d4-m
dimensions
5(No Transcript)
6This system describes geodesics on an
infinitely-dimensional Riemannian manifold of the
area-preserving diffeomorfisms. On a torus,
7Add force and dissipation to provide for
turbulence
()
lhs of () conserves
8Kraichnans double cascade picture
Q
P
k
pumping
9Inverse Q-cascade
10Small-scale forcing inverse cascades
11 Locality scale invariance ? conformal
invariance ?
Polyakov 1993
12(No Transcript)
13_____________
14- Boundary
- Frontier
- Cut points
perimeter P
Bernard, Boffetta, Celani GF, Nature Physics
2006, PRL2007
15Vorticity clusters
16Schramm-Loewner Evolution (SLE)
17(No Transcript)
18What it has to do with turbulence?
19C?(t)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23m
24(No Transcript)
25(No Transcript)
26(No Transcript)
27Different systems producing SLE
- Critical phenomena with local Hamiltonians
- Random walks, non necessarily local
- Inverse cascades in turbulence
- Nodal lines of wave functions in chaotic systems
- Spin glasses
- Rocky coastlines
28Conclusion
Inverse cascades seems to be scale
invariant. Within experimental accuracy,
isolines of advected quantities are conformal
invariant (SLE) in turbulent inverse cascades.
Why?
29(No Transcript)