Phases - PowerPoint PPT Presentation

1 / 74
About This Presentation
Title:

Phases

Description:

R. Balian ' Statistical mechanics ' 52. Nuclear Phases, India, 2006 : 80 ... R. Balian ' Statistical mechanics ' 52. Classical : 6.N coordinates. Point in phase space ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 75
Provided by: chomazp
Category:
Tags: phases

less

Transcript and Presenter's Notes

Title: Phases


1

2
??????? Phases
  • Thermodynamic, Equilibrium
  • Statistical ensemble
  • Observation space
  • Information entropy
  • Gibbs Equilibria
  • Example Mean-field
  • Discussion
  • What is temperature?
  • What is equilibrium?
  • Ensemble inequivalence
  • Time dependent equilibria
  • Nuclear matter
  • Isospin dependent EOS
  • Phase transition
  • Spinodal decomposition
  • Neutron Supernovae
  • Phase transi. finite system
  • Zero of partition sum
  • Bimodalities

Philippe CHOMAZ - GANIL
1
3

4
Absolute necessity of the second principle
R. Balian  Statistical mechanics 

52
5
Absolute necessity of the second principle
R. Balian  Statistical mechanics 
  • First principle energy conservation
  • Time independent laws (symmetry) gt E conserved
  • Classical
  • Point in phase space
  • Quantum
  • Vector of Hilbert space

?(q)??q??
q
52
6
Absolute necessity of the second principle
R. Balian  Statistical mechanics 
  • First principle energy conservation
  • Time independent laws (symmetry) gt E conserved
  • Classical
  • Point in phase space
  • Quantum
  • Vector of Hilbert space

?(q)??q??
t0
q
t0
t0
t0
52
7
Absolute necessity of the second principle
R. Balian  Statistical mechanics 
  • First principle energy conservation
  • Time independent laws (symmetry) gt E conserved
  • Classical
  • Point in phase space
  • Quantum
  • Vector of Hilbert space

?(q)??q??
t0
q
t0
t0
t0
52
8
Absolute necessity of the second principle
R. Balian  Statistical mechanics 
  • Initial condition gt infinite information needed
  • Infinite accuracy needed (Chaos)
  • Classical
  • 6.N coordinates
  • Point in phase space
  • Quantum
  • 2.8 coordinates
  • Vector of Hilbert space

?(q)??q??
q
52
9
Absolute necessity of the second principle
R. Balian  Statistical mechanics 
  • Initial condition gt infinite information needed
  • Infinite accuracy needed (Chaos)
  • Classical
  • 6.N coordinates
  • Point in phase space
  • Quantum
  • 2.8 coordinates
  • Vector of Hilbert space
  • Degree of freedom gt infinite information needed
  • Our ignorance of initial comdition should be
    taken into account to make the theory meaningful

52
10
Classical Chaos lt Quantum 8 D. freedom
  • Classical
  • 6.N coordinates
  • Chaos
  • Quantum
  • 2.8 coordinates
  • Projection

ltpgt
ltqgt
ltp2gt
ltqpgt
ltq2gt
  • Our ignorance of initial comdition should be
    taken into account to make the theory meaningful

52
11

12
ThermodynamicsInformation theoryStatistical
physics
-I-

2
13

14
A-Thermo Statistical ensembles
R. Balian  Statistical mechanics 

52
15
A-Ensembles
R. Balian  Statistical mechanics 
  • Ensemble of events / partitions / replicas
  • State
  • Classical
  • Point in phase space
  • Ensemble statesoccurrence probability
  • gt Phase space density
  • Quantum
  • Vector of Hilbert space

gt Density Matrix

52
16
One macroscopic system is an ensemble
  • Thermodynamics infinite system

One 8 system ensemble of 8 sub-systems
17
A single microscopic system ? ensemble
  • Finite system

Cannot be cut in sub-systems
18
A single microscopic system ? ensemble
Thermodynamics statistical physics do not apply
to a single realization of a finite system
Cannot be cut in sub-systems

19
Thermo describe several realizations
  • One small system in time gt statistical ensemble

20
Thermo describe several realizations
  • One small system in time gt statistical ensemble

Many events
21

22
B-Observation space
R. Balian  Statistical mechanics 

52
23

R. Balian  Statistical mechanics 
  • State
  • Classical
  • Phase space Density

Quantum Density Matrix

52
24
B-Observation space
R. Balian  Statistical mechanics 
  • State
  • Classical
  • Phase space Density

Quantum Density Matrix
  • Observables
  • Phase space functions

Operators (Matrices)
  • Observation

52
25
  • Observation

52
26

Geometrical interpretation of observation
  • Scalar product in Observable space
  • Observation
  • Observation

52
27

Geometrical interpretation of observation
  • Scalar product in Observable space
  • Observation

HUGE (Infinite) space Classical gt N6 Quantum
gt N8
52
28

29

Basis of operator space (1 particle)
  • Spatial
  • Hilbert basis gt rgt (or pgt) j(r) ltrjgt
  • Operators gt ltrOrgt (or ltpOpgt)
  • gt O f(r,p) ?oijklmn xiyjzkplpnpm






8
30

Basis of operator space (1 particle)
  • Spatial
  • Hilbert basis gt rgt (or pgt) j(r) ltrjgt
  • Operators gt ltrOrgt (or ltpOpgt)
  • gt O f(r,p) ?oijklmn xiyjzkplpnpm






8
31

Basis of operator space (1 particle)
  • Spatial
  • Hilbert basis gt rgt (or pgt) j(r) ltrjgt
  • Operators gt ltrOrgt (or ltpOpgt)
  • gt O f(r,p) ?oijklmn xiyjzkplpnpm
  • gt Infinite basis






Infinite space
8
32

Require the treatment of our ignorance
  • Initial condition cannot be known
  • The dynamics cannot be followed
  • Impossible to know everything
  • Only part of the information is relevant

Infinite space
8
33

34

Basis of operator space (1 particle)
  • Spatial
  • Hilbert basis gt rgt (or pgt) j(r) ltrjgt
  • Operators gt ltrOrgt (or ltpOpgt)
  • gt O f(r,p) ?oijklmn xiyjzkplpnpm
  • Spin
  • Hilbert basis gt gt,-gt c() ltcgt cgt
  • Operators gt O o o .s, s (s ,s ,s ) Pauli
    matrices












1
3
z
x
y
8
35

Basis of operator space (1 particle)
  • Spatial
  • Hilbert basis gt rgt (or pgt) f(r) ltrfgt
  • Operators gt ltrOrgt (or ltpOpgt)
  • gt O f(r,p) ?oijklmn xiyjzkplpnpm
  • Spin
  • Hilbert basis gt gt,-gt c() ltcgt cgt
  • Operators gt O o o .s, s (s ,s ,s ) Pauli
    matrices












1
3
z
x
y
8
36

Basis of operator space (1 particle)
  • Spatial
  • Hilbert basis gt rgt (or pgt) f(r) ltrfgt
  • Operators gt ltrOrgt (or ltpOpgt)
  • gt O f(r,p) ?oijklmn xiyjzkplpnpm
  • Spin
  • Hilbert basis gt gt,-gt c() ltcgt cgt
  • Operators gt O o o .s, s (s ,s ,s ) Pauli
    matrices
  • Isospin
  • Hilbert basis gt ngt,pgt z( ) lt zgt
    zgt












1
3
z
x
y
n
n
p
p
Physics _at_ GANIL, 2005
8
37

Basis of operator space (1 particle)
  • Spatial
  • Hilbert basis gt rgt (or pgt) f(r) ltrfgt
  • Operators gt ltrOrgt (or ltpOpgt)
  • gt O f(r,p) ?oijklmn xiyjzkplpnpm
  • Spin
  • Hilbert basis gt gt,-gt c() ltcgt cgt
  • Operators gt O o o .s, s (s ,s ,s ) Pauli
    matrices
  • Isospin
  • Hilbert basis gt gt,-gt z() ltzgt zgt
  • Operators gt O o o .t, t (t ,t ,t ) Pauli
    matrices






s
s
s






1
3
z
x
y
t
t
t






1
3
Z
X
Y
Physics _at_ GANIL, 2005
8
38

39
C- Time evolution
R. Balian  Statistical mechanics 

52
40

R. Balian  Statistical mechanics 
  • State
  • Classical
  • Phase space Density

Quantum Density Matrix

52
41
C- Time evolution
R. Balian  Statistical mechanics 
  • State
  • Classical
  • Phase space Density

Quantum Density Matrix
  • Dynamics
  • Hamilton

Schrödinger
Liouville-von Neumann
  • Liouville

52
42
C- Time evolution
R. Balian  Statistical mechanics 
  • Observation
  • Classical

Quantum
  • Dynamics

Heisenberg (Ehrenfest)
  • State

Liouville-von Neumann
  • Liouville

52
43

44
C- Information and Entropy
R. Balian  Statistical mechanics 

52
45
C- Information and Entropy
R. Balian  Statistical mechanics 
  • Shannon information of probability distribution
    p(n)
  • Measure the Information
  • Max when we know everything
  • Min when we know nothing
  • Decrease with our ignorance
  • Concavity
  • Additivity
  • Entropy

46

47
D- Equilibrium et minimum bias (max S)
R. Balian  Statistical mechanics 

52
48
D- Equilibrium et minimum bias (max S)
R. Balian  Statistical mechanics 
  • Gibbs equilibria are minimum bias distributions
  • gt distribution maximizing the entropy
  • Example
  • Nothing known gt States equiprobable
  • gt Microcanonical

49

D- Equilibrium et minimum bias (max S)
R. Balian  Statistical mechanics 
R. Balian  Statistical mechanics 
  • Statistical ensemble
  • Equilibrium Max S
  • Constraints (ltHgt, ltNgt)

(Variational principle)

  • Lagrange multipliers

Boltzman distribution
Partition sum
Equation of state

52
50
Equilibrium ensembles
D- Equilibrium et minimum bias (max S)
R. Balian  Statistical mechanics 
R. Balian  Statistical mechanics 
  • Statistical ensemble
  • Equilibrium Max S
  • Constraints (ltHgt, ltNgt)

(Minimum information)

  • Lagrange multipliers

Boltzman distribution
Partition sum
Equation of state
  • Equilibrium entropy

52
51
B-Thermodynamics
D- Equilibrium et minimum bias (max S)
R. Balian  Statistical mechanics 
R. Balian  Statistical mechanics 
  • Statistical ensemble
  • Equilibrium Max S
  • Constraints (ltHgt, ltNgt)

(Variational principle)

  • Lagrange multipliers

Boltzman distribution
Partition sum
Equation of state
  • Equilibrium entropy

53
52
B-Thermodynamics
D- Equilibrium et minimum bias (max S)
R. Balian  Statistical mechanics 
R. Balian  Statistical mechanics 
  • Statistical ensemble
  • Equilibrium Max S
  • Constraints (ltHgt, ltNgt)

(Variational principle)

  • Lagrange multipliers

Boltzman distribution
Partition sum
Equation of state
  • Equilibrium Z

53
53
Example mean field
R. Balian  Statistical mechanics 
  • Trial state
  • Sc functional of r
  • Max constrained S
  • gtlike in a mean field
  • gtEquilibrium OW
  • gtFermi-dirac statistic
  • gtMean field entropy

(Independent particles)

(Variational principle)
  • Best approximation Sc
  • gtBest approximation logZ

54
54

55
DiscussionTemperature Equilibra
-II-

2
56

57
T
A- What is temperature ?

R. Clausius
58

A- What is temperature ?
  • The microcanonical temperature

?S T-1 ?E
S k logW
59

A- What is temperature ?
  • It is what thermometers measure.

E Ethermometer Esystem
  • The microcanonical temperature

?S T-1 ?E
S k logW
60

A- What is temperature ?
  • It is what thermometers measure.

E Ethermometer Esystem
Distribution of microstates
  • The microcanonical temperature

?S T-1 ?E
S k logW
61

A- What is temperature ?
  • It is what thermometers measure.

E Eth Esys
Distribution of microstates
  • The microcanonical temperature

S k logW
?S T-1 ?E
62

A- What is temperature ?
  • It is what thermometers measure.

E Eth Esys
Equiprobable microstates
P(Eth) ? Wth (Eth) Wsys(E-Eth)
max P gt ?logWth - ?logWsys 0
max P gt ?Sth - ?Ssys 0
Most probable partition Tth ?sys
  • The microcanonical temperature

?S T-1 ?E
S k logW
63

Realization of a cononical ensemble
  • The thermometers is canonically distributed

E Eth Esys
Equiprobable microstates
P(Eth) ? Wth (Eth) Wsys(E-Eth)
Small thermometer (Eth small)
Ssys (E-Eth) Ssys (E)- Eth/T
Ssys logWsys
Boltzmann
P(Eth) ? Wth (Eth) exp(-Eth/T)
64

65
B- What are the various equilibria?

66
B- What are the various equilibria?
R. Balian  Statistical mechanics 
  • Macroscopic
  • One realization (event) can be an equilibrium
  • One 8 system 8 ensemble of 8 sub-systems

67
B- What are the various equilibria?
R. Balian  Statistical mechanics 
  • Macroscopic
  • One realization (event) can be an equilibrium
  • One 8 system 8 ensemble of 8 sub-systems
  • Microscopic
  • Ensemble of replicas needed
  • One realization (event) cannot be an equilibrium
  • Gibbs Equilibrium maximum entropy
  • Average over time if ergodic
  • Average over events if chaotic/stochastic
  • Average over replicas if minimum info

Ergodic some times used instead of uniform
population of phase space
68
B- What are the various equilibria?
R. Balian  Statistical mechanics 
  • Ergodic (Bound systems only)
  • 8 time average phase space average
  • Ergodic gt lt? statistics
  • Only conserved quantities (E, J, P )

69
Validity conditions
R. Balian  Statistical mechanics 

70
Information theory for finite system
R. Balian  Statistical mechanics 

71
Many different ensembles
Microcanonical
E
ltEgt
Canonical
V
Isochore
ltr3gt
Isobare
ltQ2gt
Deformed
ltp.rgt
Expanding
ltAgt
Grand

ltLgt
Rotating
...
Others
72
C-Finite systems ensemble inequivalence

73
C-Finite systems ensemble inequivalence
R. Balian  Statistical mechanics 
  • Géneral ref.
  • Phase trans.

74
C-Finite systems ensemble inequivalence
R. Balian  Statistical mechanics 

75
Inequivalence


76
C-Finite systems ensemble inequivalence

77

78

79

80
Write a Comment
User Comments (0)
About PowerShow.com