Title: Phases
1 2??????? Phases
- Thermodynamic, Equilibrium
- Statistical ensemble
- Observation space
- Information entropy
- Gibbs Equilibria
- Example Mean-field
- Discussion
- What is temperature?
- What is equilibrium?
- Ensemble inequivalence
- Time dependent equilibria
- Nuclear matter
- Isospin dependent EOS
- Phase transition
- Spinodal decomposition
- Neutron Supernovae
- Phase transi. finite system
- Zero of partition sum
- Bimodalities
Philippe CHOMAZ - GANIL
1
3 4Absolute necessity of the second principle
R. Balian Statistical mechanics
52
5Absolute necessity of the second principle
R. Balian Statistical mechanics
- First principle energy conservation
- Time independent laws (symmetry) gt E conserved
- Classical
-
-
- Point in phase space
- Quantum
-
- Vector of Hilbert space
?(q)??q??
q
52
6Absolute necessity of the second principle
R. Balian Statistical mechanics
- First principle energy conservation
- Time independent laws (symmetry) gt E conserved
- Classical
-
-
- Point in phase space
- Quantum
-
- Vector of Hilbert space
?(q)??q??
t0
q
t0
t0
t0
52
7Absolute necessity of the second principle
R. Balian Statistical mechanics
- First principle energy conservation
- Time independent laws (symmetry) gt E conserved
- Classical
-
-
- Point in phase space
- Quantum
-
- Vector of Hilbert space
?(q)??q??
t0
q
t0
t0
t0
52
8Absolute necessity of the second principle
R. Balian Statistical mechanics
- Initial condition gt infinite information needed
- Infinite accuracy needed (Chaos)
- Classical
- 6.N coordinates
-
- Point in phase space
- Quantum
- 2.8 coordinates
- Vector of Hilbert space
?(q)??q??
q
52
9Absolute necessity of the second principle
R. Balian Statistical mechanics
- Initial condition gt infinite information needed
- Infinite accuracy needed (Chaos)
- Classical
- 6.N coordinates
-
- Point in phase space
- Quantum
- 2.8 coordinates
- Vector of Hilbert space
- Degree of freedom gt infinite information needed
- Our ignorance of initial comdition should be
taken into account to make the theory meaningful
52
10Classical Chaos lt Quantum 8 D. freedom
- Classical
- 6.N coordinates
-
- Chaos
- Quantum
- 2.8 coordinates
- Projection
ltpgt
ltqgt
ltp2gt
ltqpgt
ltq2gt
-
- Our ignorance of initial comdition should be
taken into account to make the theory meaningful
52
11 12ThermodynamicsInformation theoryStatistical
physics
-I-
2
13 14A-Thermo Statistical ensembles
R. Balian Statistical mechanics
52
15A-Ensembles
R. Balian Statistical mechanics
- Ensemble of events / partitions / replicas
- State
- Classical
- Point in phase space
- Ensemble statesoccurrence probability
- gt Phase space density
- Quantum
- Vector of Hilbert space
gt Density Matrix
52
16One macroscopic system is an ensemble
- Thermodynamics infinite system
One 8 system ensemble of 8 sub-systems
17A single microscopic system ? ensemble
Cannot be cut in sub-systems
18A single microscopic system ? ensemble
Thermodynamics statistical physics do not apply
to a single realization of a finite system
Cannot be cut in sub-systems
19Thermo describe several realizations
- One small system in time gt statistical ensemble
20Thermo describe several realizations
- One small system in time gt statistical ensemble
Many events
21 22B-Observation space
R. Balian Statistical mechanics
52
23 R. Balian Statistical mechanics
- State
- Classical
- Phase space Density
Quantum Density Matrix
52
24B-Observation space
R. Balian Statistical mechanics
- State
- Classical
- Phase space Density
Quantum Density Matrix
- Observables
- Phase space functions
Operators (Matrices)
52
25 52
26 Geometrical interpretation of observation
- Scalar product in Observable space
-
52
27 Geometrical interpretation of observation
- Scalar product in Observable space
-
HUGE (Infinite) space Classical gt N6 Quantum
gt N8
52
28 29 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) j(r) ltrjgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
8
30 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) j(r) ltrjgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
-
8
31 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) j(r) ltrjgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
- gt Infinite basis
Infinite space
8
32 Require the treatment of our ignorance
- Initial condition cannot be known
- The dynamics cannot be followed
- Impossible to know everything
- Only part of the information is relevant
Infinite space
8
33 34 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) j(r) ltrjgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
- Spin
- Hilbert basis gt gt,-gt c() ltcgt cgt
- Operators gt O o o .s, s (s ,s ,s ) Pauli
matrices
1
3
z
x
y
8
35 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) f(r) ltrfgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
- Spin
- Hilbert basis gt gt,-gt c() ltcgt cgt
- Operators gt O o o .s, s (s ,s ,s ) Pauli
matrices
1
3
z
x
y
8
36 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) f(r) ltrfgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
- Spin
- Hilbert basis gt gt,-gt c() ltcgt cgt
- Operators gt O o o .s, s (s ,s ,s ) Pauli
matrices - Isospin
- Hilbert basis gt ngt,pgt z( ) lt zgt
zgt -
1
3
z
x
y
n
n
p
p
Physics _at_ GANIL, 2005
8
37 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) f(r) ltrfgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
- Spin
- Hilbert basis gt gt,-gt c() ltcgt cgt
- Operators gt O o o .s, s (s ,s ,s ) Pauli
matrices - Isospin
- Hilbert basis gt gt,-gt z() ltzgt zgt
- Operators gt O o o .t, t (t ,t ,t ) Pauli
matrices
s
s
s
1
3
z
x
y
t
t
t
1
3
Z
X
Y
Physics _at_ GANIL, 2005
8
38 39C- Time evolution
R. Balian Statistical mechanics
52
40 R. Balian Statistical mechanics
- State
- Classical
- Phase space Density
Quantum Density Matrix
52
41C- Time evolution
R. Balian Statistical mechanics
- State
- Classical
- Phase space Density
Quantum Density Matrix
Schrödinger
Liouville-von Neumann
52
42C- Time evolution
R. Balian Statistical mechanics
Quantum
Heisenberg (Ehrenfest)
Liouville-von Neumann
52
43 44C- Information and Entropy
R. Balian Statistical mechanics
52
45C- Information and Entropy
R. Balian Statistical mechanics
- Shannon information of probability distribution
p(n)
- Measure the Information
- Max when we know everything
- Min when we know nothing
- Decrease with our ignorance
- Concavity
- Additivity
46 47D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
52
48D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
- Gibbs equilibria are minimum bias distributions
- gt distribution maximizing the entropy
- Example
- Nothing known gt States equiprobable
- gt Microcanonical
49 D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
52
50Equilibrium ensembles
D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Minimum information)
Boltzman distribution
Partition sum
Equation of state
52
51B-Thermodynamics
D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
53
52B-Thermodynamics
D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
53
53Example mean field
R. Balian Statistical mechanics
- Trial state
- Sc functional of r
- Max constrained S
- gtlike in a mean field
- gtEquilibrium OW
- gtFermi-dirac statistic
- gtMean field entropy
(Independent particles)
(Variational principle)
- Best approximation Sc
- gtBest approximation logZ
54
54 55DiscussionTemperature Equilibra
-II-
2
56 57T
A- What is temperature ?
R. Clausius
58 A- What is temperature ?
- The microcanonical temperature
?S T-1 ?E
S k logW
59 A- What is temperature ?
- It is what thermometers measure.
E Ethermometer Esystem
- The microcanonical temperature
?S T-1 ?E
S k logW
60 A- What is temperature ?
- It is what thermometers measure.
E Ethermometer Esystem
Distribution of microstates
- The microcanonical temperature
?S T-1 ?E
S k logW
61 A- What is temperature ?
- It is what thermometers measure.
E Eth Esys
Distribution of microstates
- The microcanonical temperature
S k logW
?S T-1 ?E
62 A- What is temperature ?
- It is what thermometers measure.
E Eth Esys
Equiprobable microstates
P(Eth) ? Wth (Eth) Wsys(E-Eth)
max P gt ?logWth - ?logWsys 0
max P gt ?Sth - ?Ssys 0
Most probable partition Tth ?sys
- The microcanonical temperature
?S T-1 ?E
S k logW
63 Realization of a cononical ensemble
- The thermometers is canonically distributed
E Eth Esys
Equiprobable microstates
P(Eth) ? Wth (Eth) Wsys(E-Eth)
Small thermometer (Eth small)
Ssys (E-Eth) Ssys (E)- Eth/T
Ssys logWsys
Boltzmann
P(Eth) ? Wth (Eth) exp(-Eth/T)
64 65B- What are the various equilibria?
66B- What are the various equilibria?
R. Balian Statistical mechanics
- Macroscopic
- One realization (event) can be an equilibrium
- One 8 system 8 ensemble of 8 sub-systems
67B- What are the various equilibria?
R. Balian Statistical mechanics
- Macroscopic
- One realization (event) can be an equilibrium
- One 8 system 8 ensemble of 8 sub-systems
- Microscopic
- Ensemble of replicas needed
- One realization (event) cannot be an equilibrium
- Gibbs Equilibrium maximum entropy
- Average over time if ergodic
- Average over events if chaotic/stochastic
- Average over replicas if minimum info
Ergodic some times used instead of uniform
population of phase space
68B- What are the various equilibria?
R. Balian Statistical mechanics
- Ergodic (Bound systems only)
- 8 time average phase space average
- Ergodic gt lt? statistics
- Only conserved quantities (E, J, P )
69Validity conditions
R. Balian Statistical mechanics
70Information theory for finite system
R. Balian Statistical mechanics
71 Many different ensembles
Microcanonical
E
ltEgt
Canonical
V
Isochore
ltr3gt
Isobare
ltQ2gt
Deformed
ltp.rgt
Expanding
ltAgt
Grand
ltLgt
Rotating
...
Others
72C-Finite systems ensemble inequivalence
73C-Finite systems ensemble inequivalence
R. Balian Statistical mechanics
74C-Finite systems ensemble inequivalence
R. Balian Statistical mechanics
75Inequivalence
76C-Finite systems ensemble inequivalence
77 78 79 80