Title: Procrustes Analysis and Its Application in Computer Graphics
1Procrustes Analysis and Its Application in
Computer Graphics
- Speaker Lei Zhang
- 2008/10/08
2What is Procrustes Analysis
Procrustes pr?ukr?stiz
Procrustes analysis is the name for the process
of performing a shape-preserving Euclidean
transformation.
Procrustean
3Procrustes Problem
Given
4Procrustes Problem
Given
, find
5Procrustes Problem
Given
, find
6Procrustes Problem
- Orthogonal Procrustes Problem (OPP)
Given
P. H. Schoenemann. A generalized solution of the
orthogonal Procrustes problem. 1966.
7Procrustes Problem
- Extended Orthogonal Procrustes Problem
Given
P. H. Schoenemann, R. Carroll. Fitting one matrix
to another under choice of a central dilation and
a rigid motion. 1970.
8Procrustes Problem
- Rotation Orthogonal Procrustes Problem
Given
G. Wahba. A least squares estimate of satellite
attitude. 1966.
9Procrustes Problem
- Permutation Procrustes Problem (PPP)
Given
J. C. Gower. Multivariate analysis ordination,
multidimensional scaling and allied topics. 1984.
10Procrustes Problem
- Symmetric Procrustes Problem (SPP)
Given
H. J. Larson. Least squares estimation of the
components of a symmetric matrix. 1966.
11Who is Procrustes
- Greek Mythology
- One who stretches
- A.k.a Polypemon
- A.k.a Damastes
Poseidon
Theseus
12Peter H. Schonemann Professor At Department of
Psychological Science, Purdue University
P. H. Schoenemann. A generalized solution of the
orthogonal Procrustes problem. Psychometrika,
1966.
J. C. Gower, G. B. Dijksterhuis. Procrustes
problems. Oxford University Press, 2004.
13Applications
- Factor analysis, statistic
- Satellite tracking
- Rigid body movement in robotics
- Structural and system identification
- Computer graphics
- Sensor Networks
14Reference
- Olga Sorkine, Marc Alexa. As-rigid-as-possible
surface modeling. SGP 2007. - M. B. Stegmann, D. D. Gomez. A brief introduction
to statistical shape analysis. Lecture notes.
Denmark Technical University. - Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman,
Steven J. Gorlter. A local/global approach to
mesh parameterization. SGP 2008. - Lei Zhang, Ligang Liu, Guojin Wang. Meshless
parameterization by rigid alignment and surface
reconstruction. 2008 - Lei Zhang, Ligang Liu, Craig Gotsman, Steven J.
Gorlter. An as-rigid-as-possible approach to
sensor networks localization. Submitted to IEEE
INFOCOM 2009.
15Shape Deformation
16Good Shape Deformation
- Smooth effect on the large scale approximation
- Preserve detail on the local structure
17Direct Local Structure
- Small-sized Cells
- Smooth surface
18Direct Local Structure
- Small-sized Cells
- Discrete surface
19Direct Detail Preserve
Shape-preserving
transformation
20Rotation Transformation
21Rotation Transformation
Rotation Orthogonal Procrustes Problem
22Procrustes Analysis
23Procrustes Analysis
Sigular Value Decomposition
24Procrustes Analysis
Sigular Value Decomposition
25Local Rigidity Energy
26Local Rigidity Energy
- b is known, calculate R by Procrustes analysis
- R is known, calculate b by least-squares
optimization (Laplace equation)
27Alternating Least-squares
1 iteration
Final result
Initial guess
- b is known, calculate R by Procrustes analysis
- R is known, calculate b by least-squares
optimization (Laplace equation)
28Results
Procrustes in shape deformation
29Shape Registration
30What is Shape
Shape is all the geometrical information that
remains when location, scale and rotational
effects are filtered out from an object. --I. L.
Dryden and K. V. Mardia. Statistical Shape
Analysis. 1998
31Shape Representation
32Shape Registration
- Euclidean transformation
- Translation
- Similarity
- Rotation
Landmark correspondence
33Algorithm
- Generalized Orthogonal Procrustes Analysis (GPA)
Initial select default mean shape
Align
Translation
- Move centroid of each shape to origin
- Normalize each shapes centroid sized
- Rotate each shape to approximate the mean shape.
Similarity
Rotation
Calculate the new mean shape
Repeat
34GPA
35Algorithm
- Generalized Orthogonal Procrustes Analysis (GPA)
Initial select default mean shape
Align
Translation
- Move centroid of each shape to origin
- Normalize each shapes centroid sized
- Rotate each shape to approximate the mean shape.
Similarity
Rotation
Calculate the new mean shape
Repeat
36GPA
37Algorithm
- Generalized Orthogonal Procrustes Analysis (GPA)
Initial select default mean shape
Align
Translation
- Move centroid of each shape to origin
- Normalize each shapes centroid sized
- Rotate each shape to approximate the mean shape.
Similarity
Rotation
Calculate the new mean shape
Repeat
38GPA
Rotation Orthogonal Procrustes Problem
39Algorithm
- Generalized Orthogonal Procrustes Analysis (GPA)
Initial select default mean shape
Align
Translation
- Move centroid of each shape to origin
- Normalize each shapes centroid sized
- Rotate each shape to approximate the mean shape.
Similarity
Rotation
Calculate the new mean shape
Repeat
40GPA
41Algorithm
- Generalized Orthogonal Procrustes Analysis (GPA)
Initial select default mean shape
Align
Translation
- Move centroid of each shape to origin
- Normalize each shapes centroid sized
- Rotate each shape to approximate the mean shape.
Similarity
Rotation
Calculate the new mean shape
Repeat
42Results
Procrustes in shape analysis
43Mesh Parameterization
44Problem Setting
3D mesh
2D parameterization
Keep distortion as minimal as possible
45Distortion Measure
is Jacobian of ,
is singular value of
1. Angle-preserving (i.e. conformal mapping) 2.
Area-preserving (i.e. authalic mapping) 3.
Shape-preserving (i.e. isometric mapping)
Floater, M. S. and Hormann, K. Surface
parameterization a tutorial and survey. 2004
46Distortion Measure
Conformal mapping
Authalic mapping
isometric mapping conformal authalic
473D mesh
2D parameterization
isometric
Reference triangles
48Procrustes Analysis
Reference triangle
2D parameterization
Procrustes Problem
- Isometric
- Conformal
- Authalic
49Procrustes Analysis
isometric
conformal
authalic
50Shape-preserving
isometric transformation
Rotation Orthogonal Procrustes Problem
51Angle-preserving
conformal transformation
Similarity Procrustes Problem
52Area-preserving
Authalic transformation
Procrustes Problem
53Parameterization
Alternating least-squares (ALS)
- Shape as-rigid-as-possible parameterization
(ARAP) - Angle as-similar-as-possible parameterization
(ASAP) - Area as-authalic-as-possible parameterization
(AAAP)
54ARAP
ASAP
AAAP
Model
55ASAP vs. ARAP
ASAP
ARAP
56Insight
Equivalent to LSCM Levy, B., et al. Least
squares conformal maps for atutomatic texture
atlas generation. Siggraph 2002.
57Comparison
- HG99 MIPS an efficient global parameterization
method. In Proc. Of Curves and Surfaces. - DMK03 An adaptable surface parameterization
method. In Proc. Of 12th International Meshing
Roundtable.
58ARAP 2.06 2.05
ASAP 2.00 88.14
ABF 2.00 2.64
- ABF Sheffa, et al, TOG, 2005
- IC Gu, et al, TVCG, 2008
- CP Gotsman, et al, EG 2008
IC 2.05 2.67
CP 2.00 2.64
59ARAP 2.19 2.11
ASAP 2.05 15.4
ABF 2.12 9.12
- ABF Sheffa, et al, TOG, 2005
- IC Gu, et al, TVCG, 2008
- CP Gotsman, et al, EG 2008
IC 3.09 3.91
CP 2.29 11.9
60ARAP 2.01 2.01
ABF 2.00 2.09
Procrustes in parameterization
61Surface Reconstruction
62Problem Setting
Points Set
Reconstruction
63Meshless Parameterization
Points Set
Parameterization
Reconstruction
Delaunay triangulation
64Local Tangent Flattening
65Rigid Alignment
Rotation Orthogonal Procrustes Problem
66Parameterization
- Alternating Least Squares
- B is known, calculate R by Procrustes analysis
- R is known, calculate B by least-squares
optimization (Laplace equation)
67Initialization
Linear least-squares w.r.t A and a, b, c, d
68Affine Alignment
Points Set
Affine alignment
69Affine alignment
Rigid alignment
70Delaunay Triangulation
Remove redundant triangle
71Results
Floater, et al, CAGD, 2001
Roweis, et al, Science, 2001
Our approach
72Texture Mapping
Floater, et al, CAGD, 2001
Roweis, et al, Science, 2001
Our approach
73Floater, et al, CAGD, 2001
Roweis, et al, Science, 2001
Our approach
74Texture Mapping
Floater, et al, CAGD, 2001
Roweis, et al, Science, 2001
Our approach
Procrustes in surface reconstruction
75Summary
- Procrustes Analysis
- Euclidean transformation
- Direct estimate of shape transformation
- Versatile
- Shape deformation
- Shape analysis
- Mesh parameterization
- Surface reconstruction
76Thanks for your attention!
77QA