Procrustes Analysis and Its Application in Computer Graphics - PowerPoint PPT Presentation

1 / 77
About This Presentation
Title:

Procrustes Analysis and Its Application in Computer Graphics

Description:

Procrustes analysis is the name for the process of performing a shape-preserving ... Psychometrika, 1966. J. C. Gower, G. B. Dijksterhuis. Procrustes problems. ... – PowerPoint PPT presentation

Number of Views:568
Avg rating:3.0/5.0
Slides: 78
Provided by: Eth44
Category:

less

Transcript and Presenter's Notes

Title: Procrustes Analysis and Its Application in Computer Graphics


1
Procrustes Analysis and Its Application in
Computer Graphics
  • Speaker Lei Zhang
  • 2008/10/08

2
What is Procrustes Analysis
Procrustes pr?ukr?stiz
  • Wikipedia
  • ????

Procrustes analysis is the name for the process
of performing a shape-preserving Euclidean
transformation.
Procrustean
3
Procrustes Problem
Given
4
Procrustes Problem
Given
, find
5
Procrustes Problem
Given
, find
6
Procrustes Problem
  • Orthogonal Procrustes Problem (OPP)

Given
P. H. Schoenemann. A generalized solution of the
orthogonal Procrustes problem. 1966.
7
Procrustes Problem
  • Extended Orthogonal Procrustes Problem

Given
P. H. Schoenemann, R. Carroll. Fitting one matrix
to another under choice of a central dilation and
a rigid motion. 1970.
8
Procrustes Problem
  • Rotation Orthogonal Procrustes Problem

Given
G. Wahba. A least squares estimate of satellite
attitude. 1966.
9
Procrustes Problem
  • Permutation Procrustes Problem (PPP)

Given
J. C. Gower. Multivariate analysis ordination,
multidimensional scaling and allied topics. 1984.
10
Procrustes Problem
  • Symmetric Procrustes Problem (SPP)

Given
H. J. Larson. Least squares estimation of the
components of a symmetric matrix. 1966.
11
Who is Procrustes
  • Greek Mythology
  • One who stretches
  • A.k.a Polypemon
  • A.k.a Damastes

Poseidon
Theseus
12
Peter H. Schonemann Professor At Department of
Psychological Science, Purdue University
P. H. Schoenemann. A generalized solution of the
orthogonal Procrustes problem. Psychometrika,
1966.
J. C. Gower, G. B. Dijksterhuis. Procrustes
problems. Oxford University Press, 2004.
13
Applications
  • Factor analysis, statistic
  • Satellite tracking
  • Rigid body movement in robotics
  • Structural and system identification
  • Computer graphics
  • Sensor Networks

14
Reference
  • Olga Sorkine, Marc Alexa. As-rigid-as-possible
    surface modeling. SGP 2007.
  • M. B. Stegmann, D. D. Gomez. A brief introduction
    to statistical shape analysis. Lecture notes.
    Denmark Technical University.
  • Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman,
    Steven J. Gorlter. A local/global approach to
    mesh parameterization. SGP 2008.
  • Lei Zhang, Ligang Liu, Guojin Wang. Meshless
    parameterization by rigid alignment and surface
    reconstruction. 2008
  • Lei Zhang, Ligang Liu, Craig Gotsman, Steven J.
    Gorlter. An as-rigid-as-possible approach to
    sensor networks localization. Submitted to IEEE
    INFOCOM 2009.

15
Shape Deformation
16
Good Shape Deformation
  • Smooth effect on the large scale approximation
  • Preserve detail on the local structure

17
Direct Local Structure
  • Small-sized Cells
  • Smooth surface

18
Direct Local Structure
  • Small-sized Cells
  • Discrete surface

19
Direct Detail Preserve
Shape-preserving
transformation
20
Rotation Transformation
21
Rotation Transformation
Rotation Orthogonal Procrustes Problem
22
Procrustes Analysis
23
Procrustes Analysis
Sigular Value Decomposition
24
Procrustes Analysis
Sigular Value Decomposition
25
Local Rigidity Energy
26
Local Rigidity Energy
  • b is known, calculate R by Procrustes analysis
  • R is known, calculate b by least-squares
    optimization (Laplace equation)

27
Alternating Least-squares
1 iteration
Final result
Initial guess
  • b is known, calculate R by Procrustes analysis
  • R is known, calculate b by least-squares
    optimization (Laplace equation)

28
Results
Procrustes in shape deformation
29
Shape Registration
30
What is Shape
Shape is all the geometrical information that
remains when location, scale and rotational
effects are filtered out from an object. --I. L.
Dryden and K. V. Mardia. Statistical Shape
Analysis. 1998
31
Shape Representation
  • Landmarks

32
Shape Registration
  • Euclidean transformation
  • Translation
  • Similarity
  • Rotation

Landmark correspondence
33
Algorithm
  • Generalized Orthogonal Procrustes Analysis (GPA)

Initial select default mean shape
Align
Translation
  1. Move centroid of each shape to origin
  2. Normalize each shapes centroid sized
  3. Rotate each shape to approximate the mean shape.

Similarity
Rotation
Calculate the new mean shape
Repeat
34
GPA
  • Translation

35
Algorithm
  • Generalized Orthogonal Procrustes Analysis (GPA)

Initial select default mean shape
Align
Translation
  1. Move centroid of each shape to origin
  2. Normalize each shapes centroid sized
  3. Rotate each shape to approximate the mean shape.

Similarity
Rotation
Calculate the new mean shape
Repeat
36
GPA
  • Similarity

37
Algorithm
  • Generalized Orthogonal Procrustes Analysis (GPA)

Initial select default mean shape
Align
Translation
  1. Move centroid of each shape to origin
  2. Normalize each shapes centroid sized
  3. Rotate each shape to approximate the mean shape.

Similarity
Rotation
Calculate the new mean shape
Repeat
38
GPA
Rotation Orthogonal Procrustes Problem
  • Rotation

39
Algorithm
  • Generalized Orthogonal Procrustes Analysis (GPA)

Initial select default mean shape
Align
Translation
  1. Move centroid of each shape to origin
  2. Normalize each shapes centroid sized
  3. Rotate each shape to approximate the mean shape.

Similarity
Rotation
Calculate the new mean shape
Repeat
40
GPA
  • Calculate new mean shape

41
Algorithm
  • Generalized Orthogonal Procrustes Analysis (GPA)

Initial select default mean shape
Align
Translation
  1. Move centroid of each shape to origin
  2. Normalize each shapes centroid sized
  3. Rotate each shape to approximate the mean shape.

Similarity
Rotation
Calculate the new mean shape
Repeat
42
Results
Procrustes in shape analysis
43
Mesh Parameterization
44
Problem Setting
3D mesh
2D parameterization
Keep distortion as minimal as possible
45
Distortion Measure
is Jacobian of ,
is singular value of
1. Angle-preserving (i.e. conformal mapping) 2.
Area-preserving (i.e. authalic mapping) 3.
Shape-preserving (i.e. isometric mapping)
Floater, M. S. and Hormann, K. Surface
parameterization a tutorial and survey. 2004
46
Distortion Measure
Conformal mapping
Authalic mapping
isometric mapping conformal authalic
47
3D mesh
2D parameterization
isometric
Reference triangles
48
Procrustes Analysis
Reference triangle
2D parameterization
Procrustes Problem
  • Isometric
  • Conformal
  • Authalic

49
Procrustes Analysis
isometric
conformal
authalic
50
Shape-preserving
isometric transformation
Rotation Orthogonal Procrustes Problem
51
Angle-preserving
conformal transformation
Similarity Procrustes Problem
52
Area-preserving
Authalic transformation
Procrustes Problem
53
Parameterization
Alternating least-squares (ALS)
  • Shape as-rigid-as-possible parameterization
    (ARAP)
  • Angle as-similar-as-possible parameterization
    (ASAP)
  • Area as-authalic-as-possible parameterization
    (AAAP)

54
ARAP
ASAP
AAAP
Model
55
ASAP vs. ARAP
ASAP
ARAP
56
Insight
  • ASAP
  • ARAP

Equivalent to LSCM Levy, B., et al. Least
squares conformal maps for atutomatic texture
atlas generation. Siggraph 2002.
57
Comparison
  • HG99 MIPS an efficient global parameterization
    method. In Proc. Of Curves and Surfaces.
  • DMK03 An adaptable surface parameterization
    method. In Proc. Of 12th International Meshing
    Roundtable.

58
ARAP 2.06 2.05
ASAP 2.00 88.14
ABF 2.00 2.64
  • ABF Sheffa, et al, TOG, 2005
  • IC Gu, et al, TVCG, 2008
  • CP Gotsman, et al, EG 2008

IC 2.05 2.67
CP 2.00 2.64
59
ARAP 2.19 2.11
ASAP 2.05 15.4
ABF 2.12 9.12
  • ABF Sheffa, et al, TOG, 2005
  • IC Gu, et al, TVCG, 2008
  • CP Gotsman, et al, EG 2008

IC 3.09 3.91
CP 2.29 11.9
60
ARAP 2.01 2.01
ABF 2.00 2.09
Procrustes in parameterization
61
Surface Reconstruction
62
Problem Setting
Points Set
Reconstruction
63
Meshless Parameterization
Points Set
Parameterization
Reconstruction
Delaunay triangulation
64
Local Tangent Flattening
65
Rigid Alignment
  • For each point

Rotation Orthogonal Procrustes Problem
66
Parameterization
  • Alternating Least Squares
  • B is known, calculate R by Procrustes analysis
  • R is known, calculate B by least-squares
    optimization (Laplace equation)

67
Initialization
  • Affine Alignment

Linear least-squares w.r.t A and a, b, c, d
68
Affine Alignment
Points Set
Affine alignment
69
Affine alignment
Rigid alignment
70
Delaunay Triangulation
Remove redundant triangle
71
Results
Floater, et al, CAGD, 2001
Roweis, et al, Science, 2001
Our approach
72
Texture Mapping
Floater, et al, CAGD, 2001
Roweis, et al, Science, 2001
Our approach
73
Floater, et al, CAGD, 2001
Roweis, et al, Science, 2001
Our approach
74
Texture Mapping
Floater, et al, CAGD, 2001
Roweis, et al, Science, 2001
Our approach
Procrustes in surface reconstruction
75
Summary
  • Procrustes Analysis
  • Euclidean transformation
  • Direct estimate of shape transformation
  • Versatile
  • Shape deformation
  • Shape analysis
  • Mesh parameterization
  • Surface reconstruction

76
Thanks for your attention!
77
QA
Write a Comment
User Comments (0)
About PowerShow.com