Bacterial Genomics - PowerPoint PPT Presentation

1 / 38
About This Presentation
Title:

Bacterial Genomics

Description:

... the model lab organisms, including the human genome. ACTG ... Catching the crumbs from the human genome project. ACTG. Why sequence genomes? Releases resources ... – PowerPoint PPT presentation

Number of Views:114
Avg rating:3.0/5.0
Slides: 39
Provided by: markp95
Category:

less

Transcript and Presenter's Notes

Title: Bacterial Genomics


1
Bacterial Genomics
ACGTACGTACGTGCGTGAGATCGCTGATGCTGATCGTAGCTGATGCGCTA
AGATGATGATGCTGATGATGCTGATCGTAGTCGATGATCGTAGTCGATGC
TCGGCTGCGGGGCTGCTGGCTGCTGCTTATATATAGGATAGTAGATGATA
GTAGACTGATGCTGATCGTAGCTGATGCGCTAAGATGATGATGCTGATGA
TGCTGATCGTAGTCGATGAT
  • Professor Mark Pallen
  • University of Birmingham

2
Bacterial Genomics
  • What is it and why bother?
  • First catch your genome
  • Now you have a genome sequence
  • 101 practical uses of a genome sequences
  • The Future

3
Genomic SpaceThe New Frontier
4
The Post-Genomic Era
  • Within the next five years, we will have the
    genome sequences
  • of every significant bacterial pathogen of
    humans, plants and animals
  • of all the model lab organisms, including the
    human genome

5
What is bacterial genomics?
  • Acquisition exploitation of whole genome
    sequences
  • Think big!
  • Study of 1000s of genes
  • High-throughput
  • Global approaches
  • Automation and Technology-driven
  • Catching the crumbs from the human genome project

6
Why sequence genomes?
  • Releases resources
  • cheap
  • only need do it once
  • only way to get info
  • renders problems finite
  • new targets
  • drugs, diagnosis, vaccines
  • pilots for human genome
  • because its there!

7
The scale of the initiative
  • gt200 bacterial genome projects underway
  • Big players
  • Wellcome Trust/Beowulf Genomics
  • TIGR
  • DOE
  • NIH
  • BBSRC

8
Pathogen Sequencing at the Sanger Centre
  • Bordetella pertussis
  • B. bronchiseptica
  • B. parapertussis
  • Campylobacter jejuni
  • Clostridium difficile
  • Corynebacterium diphtheriae
  • Mycobacterium tuberculosis
  • M. bovis
  • M. leprae
  • N. meningitidis
  • Salmonella typhi
  • Staphylococcus aureus x2
  • Streptococcus pyogenes
  • Streptomyces coelicolor
  • Yersinia pestis

9
TIGR
  • Archaeoglobus fulgidus
  • Borrelia burgdorferi
  • Deinococcus radiodurans
  • Haemophilus influenzae
  • Helicobacter pylori
  • Methanococcus jannaschii
  • Mycobacterium tuberculosis
  • Mycoplasma genitalium
  • Thermotoga maritima
  • Treponema pallidum

10
Others
  • Escherichia coli
  • Bacillus subtilis
  • Saccharomyces cerevisiae

11
First catch your genome...
  • Choose strain
  • Fresh isolate or lab strain?
  • Generate template
  • Small insert shotgun library
  • Sequence
  • ABI automated sequencers
  • Assembly
  • Closure and finishing
  • Annotation

12
Data release
  • Information wants to be free!
  • Immediate versus delayed release
  • Powerful synergy with Internet and web
  • Distance is dead!
  • Distributed Resources
  • User-friendliness of Web
  • Just Cut and Paste!

13
Genome Annotation
  • Problems
  • ORF identification
  • Inferring function from homology
  • Very labour-intensive
  • Never complete
  • need for ongoing curation

14
(No Transcript)
15
Campylobacter jejuni NCTC 11168
16
Campylobacter jejuni
  • No pathogenicity islands, prophages, IS elements,
    retrons
  • No new toxins, except for TlyA
  • Evidence for a capsule?
  • Polymorphic homopolymeric tracts
  • Associated with gene clusters for surface
    structures
  • Many variants present in same culture
  • C. jejuni is a quasi-species!

17
C. jejuni NCTC 11168
18
Homopolymeric tracts
19
Homopolymeric tracts
20
Now you have a genome sequence.
Genome
Hypothesis Driven Research
21
Complete Data Set
  • Today we have naming of parts. Japonica
  • Glistens like coral in all of the neighboring
    gardens,
  • And today we have naming of parts
  • "The Naming of Parts" by Henry Reed
  • Fuelling hypothesis-driven research
  • Hood et al. 1996 Mol Microbiol. 22951-65.
  • Used genome sequence to unravel H. influenzae
    lipopolysaccharide biosynthesis

22
Microarrays
  • Arrange large number of hybridisation targets in
    a gridded array
  • Variety of approaches
  • Oligos
  • Photomasking chip technology
  • Affymetrix GeneChip
  • Inkjet
  • Amplicons
  • Robotic spotting

23
Microarrays
  • Uses
  • Global expression studies
  • Global mutagenesis with molecular bar-coding
  • Differential genomics
  • Advantages
  • Rapid, global survey of 100-1000s of genes
  • Small scale
  • saves reagents
  • improved performance
  • Spawn hypothesis-driven projects

24
Global expression studies
  • High-density gridded arrays
  • PCR up each ORF
  • Vector-primer PCR
  • ORF-specific primers
  • Grid out onto nylon filter or glass slide
  • Make fluorophore or radio-labelled cDNA
  • Hybridise to array
  • look for differences in signal

25
(No Transcript)
26
Global Mutagenesis
  • Saccharomyces Genome Deletion Project
  • knock out all ORFs
  • simultaneously tag them with molecular barcode
  • pool mutants
  • stress
  • amplify tags, hybridise to chip
  • look for changes in hybridisation pattern
  • Similar studies on bacteria (e.g. Bacillus
    subtilis)

27
Proteomics
  • Genome is thought, proteome action!
  • Differential proteome analysis
  • Confirmation correction of genome
  • Transcription ? Expression

28
Proteomics
29
Proteomics
  • Techniques
  • 2D gels
  • peptide mass fingerprinting (MALDI-TOF)
  • peptide sequencing (nanospray)
  • Example
  • Salmonella periplasmic proteome
  • Qi SY, et al. 1996 J Bacteriol. 1785032-8.
  • O'Connor CD, et al. 1997 Electrophoresis.
    181483-90.

30
(No Transcript)
31
Interaction Maps
  • Protein-DNA interactions
  • RNA-RNA and RNA-protein interactions
  • Protein-Protein interactions
  • Yeast and bacterial two-hybrid systems
  • Protein contigs
  • Global screens yeast and H. pylori

32
Comparative Genomics
  • Paradigms?
  • Escherichia coli?
  • A megabase more in some clinical isolates
  • Helicobacter pylori?
  • Largely stable
  • PFGE samples biologically irrelevant changes

33
The Genome of the Gaps
  • Problem
  • How typical are genome-sequenced strains of
    clinical isolates?
  • What insertions, deletions and rearrangements
    occur in clinical isolates?
  • Genomic core versus genomic options
  • Prophages, PAIs, integrons, plasmids, transposons
  • Solution
  • Use genome sequence of sequenced strain(s) as
    starting point for exploring genomic diversity
  • Microarrays
  • Whole-genome PCR

34
Whole-genome PCR
  • 100-200 long PCRs
  • 20-40 kbp amplicons
  • Microtitre format
  • High throughput
  • Analyse amplicon patterns
  • Variation in amplicon size
  • Variation in pattern of drop-outs

35
Infection GenomicsThe Battle of the Genomes
Human Genome
Microbial Genome
36
Infection Genomics
Microbial Genome
Cell
Proteome
Transcriptome
Genetic basis of virulence
Cellular Microbiology
Protein-Protein Interactions
Differential Gene Expression
Cell
Genetic basis of host susceptibility
Proteome
Transcriptome
Human Genome
37
Bacterial Genomics
  • What is it and why bother?
  • First catch your genome
  • Now you have a genome sequence
  • 101 practical uses of a genome sequences
  • The Future

38
The Gods Eye View?
or the Devils in the details?
Hypothesis Driven Research
Write a Comment
User Comments (0)
About PowerShow.com