CS691G Computational Geometry - PowerPoint PPT Presentation

1 / 49
About This Presentation
Title:

CS691G Computational Geometry

Description:

Anthropology and Archeology -- Identify the parts of a ... Archaeology. 48. CS691G Computational Geometry UMass Amherst Ileana Streinu and Oliver Brock ... – PowerPoint PPT presentation

Number of Views:84
Avg rating:3.0/5.0
Slides: 50
Provided by: oliver86
Category:

less

Transcript and Presenter's Notes

Title: CS691G Computational Geometry


1
CS691G Computational Geometry
  • Ileana Streinu Oliver Brock
  • Fall 2004

2
Computational Geometry
The study of algorithms for combinatorial,
topological, and metric problems concerning sets
of points, typically in Euclidean space.
Representative areas of research include
geometric search, convexity, proximity,
intersection, and linear programming.
Online Computing Dictionary
3
Discrete Geometry
Covering
Tiling
Packing
4
Computational Geometry
  • Previously design and analysis of geometric
    algorithms
  • Overlapping and merging with discrete geometry
  • Now study of geometrical problems from a
    computational point of view

Handbook of Discrete and Computational Geometry
5
Goals
  • Theoretical background
  • algorithms
  • data structures
  • analysis
  • Practical experience
  • programming experience
  • CGAL
  • Cinderella

6
Administrative Things
  • Prerequisites mathematical maturity, exposure
    to algorithms, complexity,programming
  • Grade homeworks (33), in-class presentation
    (33), final project (33)
  • Late Policy get permission prior to due date
  • Web Site (from my home page)

7
Connection to Applications
  • Video Games
  • Voronoi Diagrams
  • Computer Graphics
  • Folding

8
Video Games
9
What we saw
  • Walking through large model
  • Collisions
  • Dynamic simulation
  • (Compare with automated movie generation)

10
What to look for
  • Algorithms
  • Complexity
  • Data structures
  • Geometric primitives

11
Proximity Queries
12
Dynamic Simulation
13
Dynamic Simulation
14
Multi-Player Games
15
Multi-Player Games
  • Some players might be computer generated
    (animations)
  • Distributed state representation

16
Motion Planning
17
Kinetic Data Structures
18
The Post Office Problem
  • Which is the closest post office to every house?
    (Don Knuth)
  • Given n sites in the plane
  • Subdivision of planebased on proximity

19
Voronoi Diagram
See Applet
20
Shape Recognition in Computer Vision
21
Uses for Voronoi Diagram
  • Anthropology and Archeology -- Identify the parts
    of a region under the influence of different
    neolithic clans, chiefdoms, ceremonial centers,
    or hill forts.
  • Astronomy -- Identify clusters of stars and
    clusters of galaxies (Here we saw what may be the
    earliest picture of a Voronoi diagram, drawn by
    Descartes in 1644, where the regions described
    the regions of gravitational influence of the sun
    and other stars.)
  • Biology, Ecology, Forestry -- Model and analyze
    plant competition ("Area potentially available to
    a tree", "Plant polygons")
  • Cartography -- Piece together satellite
    photographs into large "mosaic" maps
  • Crystallography and Chemistry -- Study chemical
    properties of metallic sodium ("Wigner-Seitz
    regions") Modelling alloy structures as sphere
    packings ("Domain of an atom")
  • Finite Element Analysis -- Generating finite
    element meshes which avoid small angles
  • Geography -- Analyzing patterns of urban
    settlements
  • Geology -- Estimation of ore reserves in a
    deposit using information obtained from bore
    holes modelling crack patterns in basalt due to
    contraction on cooling
  • Geometric Modeling -- Finding "good"
    triangulations of 3D surfaces
  • Marketing -- Model market of US metropolitan
    areas market area extending down to individual
    retail stores
  • Mathematics -- Study of positive definite
    quadratic forms ("Dirichlet tesselation",
    "Voronoi diagram")
  • Metallurgy -- Modelling "grain growth" in metal
    films
  • Meteorology -- Estimate regional rainfall
    averages, given data at discrete rain gauges
    ("Thiessen polygons")
  • Pattern Recognition -- Find simple descriptors
    for shapes that extract 1D characterizations from
    2D shapes ("Medial axis" or "skeleton" of a
    contour)
  • Physiology -- Analysis of capillary distribution
    in cross-sections of muscle tissue to compute
    oxygen transport ("Capillary domains")
  • Robotics -- Path planning in the presence of
    obstacles
  • Statistics and Data Analysis -- Analyze
    statistical clustering ("Natural neighbors"
    interpolation)
  • Zoology -- Model and analyze the territories of
    animals

22
Facts about Voronoi
  • A site has an unbounded region if and only if it
    lies on the convex hull of all sites
  • All Voronoi regions are convex
  • Dual of Delaunay triangulationQuestions
  • How fast can it be constructed?
  • How many vertices does it have?
  • What is the complexity of each cell?

23
Applications
  • Graphics
  • Realistic Rendering
  • Radiosity Computation
  • Morphing
  • Computational Biology
  • Molecular Visualization
  • Protein Folding
  • Ligand Docking
  • Computer Vision
  • Reconstructing a 3d model from images

24
Applications
  • Graphics
  • Realistic Rendering
  • Radiosity Computation
  • Morphing
  • Computational Biology
  • Molecular Visualization
  • Protein Folding
  • Ligand Docking
  • Computer Vision
  • Reconstructing a 3d model from images

25
Left picture Right computer rendering
26
-0.0035 0.034385 0.0719602 -0.003 0.0343985
0.0720802 -0.0025 0.0343985 0.0720802 -0.002
0.0344256 0.0723203 -0.0015 0.0344526 0.0725603
-0.01425 0.0345802 0.0675169 -0.01375 0.034688
0.0684772 -0.01325 0.0347284 0.0688374 -0.01275
0.0347554 0.0690774 -0.01225 0.0347958 0.0694375
-0.01175 0.0348362 0.0697976 -0.01125 0.0348767
0.0701578 -0.01075 0.0349036 0.0703978 -0.01025
0.0349171 0.0705179 -0.00975 0.034944 0.0707579
-0.00925 0.034971 0.070998 -0.00875 0.0349845
0.071118 -0.00825 0.0349979 0.0712381 -0.00775
0.0350114 0.0713581
Right computer rendering
27
(No Transcript)
28
(No Transcript)
29
Applications
  • Graphics
  • Realistic Rendering
  • Radiosity Computation
  • Morphing
  • Computational Biology
  • Molecular Visualization
  • Protein Folding
  • Ligand Docking
  • Computer Vision
  • Reconstructing a 3d model from images
  • Graphics concepts
  • Light source
  • Shadow, penumbra
  • Occluder
  • Culling
  • Geometric keywords
  • Visibility edges/regions
  • High-dimensional polytope

30
Applications
  • Graphics
  • Realistic rendering
  • Radiosity Computation
  • Morphing
  • Computational Biology
  • Molecular Visualization
  • Protein Folding
  • Ligand Docking
  • Computer Vision
  • Reconstructing a 3d model from images
  • Graphics concepts
  • Scene
  • Radiosity
  • Form factor
  • Geometric keywords
  • Visibility edges/regions
  • Visibility complex high-dimensional topological
    space
  • Duality point-line

31
Applications
  • Graphics
  • Realistic Rendering
  • Radiosity Computation
  • Morphing
  • Computational Biology
  • Molecular Visualization
  • Protein Folding
  • Ligand Docking
  • Computer Vision
  • Reconstructing a 3d model from images

Video
32
(No Transcript)
33
Applications
  • Graphics
  • Realistic Rendering
  • Radiosity Computation
  • Morphing
  • Computational Biology
  • Molecular Visualization
  • Protein Folding
  • Ligand Docking
  • Computer Vision
  • Reconstructing a 3d model from images
  • Biology concepts
  • Atom, molecule, molecular surface
  • Van der Waals radii
  • Geometric keywords
  • Alpha-hull (convex hull)
  • Topology of surface
  • Dynamic changes

34
(No Transcript)
35
Applications
  • Graphics
  • Realistic Rendering
  • Radiosity Computation
  • Morphing
  • Computational Biology
  • Molecular Visualization
  • Protein Structure Prediction and Protein Folding
  • Ligand Docking
  • Computer Vision
  • Reconstructing a 3d model from images

36
Proteins on computers
  • Where we see structure, shape, connections,
    regions
  • The computer sees only coordinates
  • For example, this PXR protein ligand is in the
    Protein Data Bank as

37
REMARK Written by O version 7.0.0 REMARK Sun Jan
21 152451 2001 CRYST1 91.345 91.345
85.302 90.00 90.00 90.00 ORIGX1 1.000000
0.000000 0.000000 0.00000 ORIGX2
0.000000 1.000000 0.000000
0.00000 ORIGX3 0.000000 0.000000 1.000000
0.00000 SCALE1 0.010948 0.000000
0.000000 0.00000 SCALE2 0.000000
0.010948 0.000000 0.00000 SCALE3
0.000000 0.000000 0.011723 0.00000 ATOM
1 C GLY 142 -5.808 44.753 13.561
1.00 58.97 6 ATOM 2 O GLY 142
-5.723 45.523 14.515 1.00 59.54 8 ATOM
3 N GLY 142 -4.377 43.177 14.842
1.00 59.37 7 ATOM 4 CA GLY 142
-5.307 43.330 13.685 1.00 59.68 6 ATOM
5 N LEU 143 -6.324 45.108 12.387
1.00 58.87 7 ATOM 6 CA LEU 143
-6.839 46.455 12.152 1.00 58.50 6 ATOM
7 CB LEU 143 -6.483 46.907 10.736
1.00 57.90 6 ATOM 8 CG LEU 143
-5.849 48.290 10.555 1.00 57.77 6 ATOM
9 CD1 LEU 143 -4.599 48.411 11.407
1.00 56.51 6 ATOM 10 CD2 LEU 143
-5.505 48.492 9.090 1.00 56.92 6 ATOM
11 C LEU 143 -8.352 46.446 12.333
1.00 58.92 6 ATOM 12 O LEU 143
-9.046 45.640 11.714 1.00 59.85 8 ATOM
13 N THR 144 -8.862 47.341 13.174
1.00 58.88 7 ATOM 14 CA THR 144
-10.299 47.407 13.444 1.00 59.76 6
38
Protein
Structure
Sequence
ATOM 1 C GLY 142 -5.808 44.753
13.561 1.00 58.97 6 ATOM 2 O GLY 142
-5.723 45.523 14.515 1.00 59.54 8 ATOM
3 N GLY 142 -4.377 43.177 14.842
1.00 59.37 7 ATOM 4 CA GLY 142
-5.307 43.330 13.685 1.00 59.68 6 ATOM
5 N LEU 143 -6.324 45.108 12.387
1.00 58.87 7 ATOM 6 CA LEU 143
-6.839 46.455 12.152 1.00 58.50 6 ATOM
7 CB LEU 143 -6.483 46.907 10.736
1.00 57.90 6 ATOM 8 CG LEU 143
-5.849 48.290 10.555 1.00 57.77 6 ATOM
9 CD1 LEU 143 -4.599 48.411 11.407
1.00 56.51 6 ATOM 10 CD2 LEU 143
-5.505 48.492 9.090 1.00 56.92 6
39
Protein
Structure
Sequence
GLY
-5.808 44.753 13.561 1.00 58.97 6
LEU -6.324
45.108 12.387 1.00 58.87 7 THR
-6.839 46.455 12.152
1.00 58.50 8
Sequence
a sentence written over a 20-letter alphabet
GLY LEU THR LEU GLY ..
Structure
Geometry coordinates for all the atoms
40
Applications
  • Graphics
  • Realistic Rendering
  • Radiosity Computation
  • Morphing
  • Computational Biology
  • Molecular Visualization
  • Protein Structure Prediction and Protein Folding
  • Ligand Docking
  • Computer Vision
  • Reconstructing a 3d model from images

41
Protein Folding
Predict Structure from Sequence
From Vijay Pandes Folding_at_Home page at Stanford
42
(No Transcript)
43
Applications
  • Graphics
  • Realistic Rendering
  • Radiosity Computation
  • Morphing
  • Computational Biology
  • Molecular Visualization
  • Protein Structure Prediction and Protein Folding
  • Ligand Docking
  • Computer Vision
  • Reconstructing a 3d model from images
  • Polygon folding
  • Creases
  • Boundary of polygon matched with itself
  • Origami (paper) folding
  • Linkage (robot arm protein backbone) folding

44
Applications
  • Graphics
  • Realistic Rendering
  • Radiosity Computation
  • Morphing
  • Computational Biology
  • Molecular Visualization
  • Protein Structure Prediction and Protein Folding
  • Ligand Docking
  • Computer Vision
  • Reconstructing a 3d model from images

45
Forma Urbis Romae http//formaurbis.stanford.edu/
46
3-dim puzzle
Protein docking
47
Archaeology
Drug design
48
Computational Geometry
  • Basic objects points, lines, line segments,
    polygons, polygonal lines, embedded graphs
  • Computed objects convex hull, alpha hull,
    triangulation, arrangement, Voronoi diagram,
    Delauney triangulation.
  • Variations static, dynamic (discrete changes),
    kinetic (continuous motion)
  • Wanted good algorithms

49
More video clips
  • SoCG04
  • http//give-lab.cs.uu.nl/socg04video/
  • SoCG03 http//theory.lcs.mit.edu/edemaine/SoCG20
    03_multimedia/webproceedings/
Write a Comment
User Comments (0)
About PowerShow.com