The ionization structure of the wind in NGC 5548 - PowerPoint PPT Presentation

About This Presentation
Title:

The ionization structure of the wind in NGC 5548

Description:

XMM-Newton. RGS (7-38 ?) spectral resolution 0.07 ? FWHM. EPIC MOS. EPIC pn. Large effective area ... is variable, while low ? is not in NGC 3783 XMM data ... – PowerPoint PPT presentation

Number of Views:50
Avg rating:3.0/5.0
Slides: 36
Provided by: Katr7
Learn more at: http://www.nhn.ou.edu
Category:

less

Transcript and Presenter's Notes

Title: The ionization structure of the wind in NGC 5548


1
The ionization structure of the wind in NGC 5548
  • Katrien Steenbrugge
  • Harvard-Smithsonian Center for Astrophysics
  • In collaboration with Jelle Kaastra
  • N. Arav, M. Crenshaw, S. Kraemer, R. Edelson, C.
    de Vries, I. George, D. Liedahl, R. van der Meer,
    F. Paerels, J. Turner, T. Yaqoob

2
Overview
  • Introduction
  • Open questions
  • UV spectra and results
  • X-ray spectra
  • Ionization structure
  • Geometry of the wind
  • Mass loss through the wind
  • Conclusions

3
NGC 5548
  • Well studied nearby Seyfert 1 galaxy
  • Low Galactic absorption
  • X-ray bright
  • Has a rather strong warm absorber
  • Collision 0.6-1.0 Gyr ago (Tyson et al.1998, ApJ,
    116, 102)
  • Study the core

4
Seyfert galaxies
NGC 5548, Kaastra et al. 2002
  • Low luminosity AGN
  • Broadened emission lines in optical and UV
    spectra
  • Seyfert 1 broad and narrow lines
  • X-ray Absorption spectrum
  • Seyfert 2 broad lines in polarized
    light
  • X-ray Emission line spectrum

NGC 1068, Kinkhabwala 2002
5
Geometry of the absorber
  • Narrow and broad emission/absorption lines
  • Viewing angle and unification
  • Seyfert 2 edge on
  • Seyfert 1 face on
  • Urry Padovani, 1995, PASP, 107, 803

6
Geometry of the absorber

  • Elvis, 2000, ApJ, 545, 63

No absorption
BAL
NAL
7
Similarities between models
  • Elvis, 2000, ApJ, 545, 63

Clouds in pressure equilibrium with a hot outflow
8
Differences between models
  • Difference in viewing angle
  • Difference in opening angle of the outflow
  • Difference in location of the absorber
  • Explains Seyfert 1 galaxies without absorption
  • Explains broad absorption line quasars
  • Expect only 1 outflow velocity
  • Explains IR emission
  • Explains Seyfert 2 galaxies

9
Open questions
  • Are the absorbers seen in the UV and the X-rays
    the same (Mathur, Wilkes Elvis, 1995, ApJ, 452,
    230)
  • Ionization structure of the absorber
  • Location and geometry of the absorber
  • Mass loss through wind, enrichment IGM

10
Photo-ionized plasma
  • Strong radiation field
  • Low density gas
  • Plasma is ionized by absorbing photons
  • Gives specific triplet ratios and series line
    ratios
  • Optically thin ? ignore radiative transfer

Godet, Collin Dumnont, 2004
11
Ionization parameter
  • ? L/nr2
  • L luminosity
  • n gas density
  • r distance from source

12
XMM-Newton
  • RGS (7-38 ?)
  • spectral resolution 0.07 ? FWHM
  • EPIC MOS
  • EPIC pn
  • Large effective area
  • Simultaneous observations

13
Chandra
  • HETGS (1-24 ?)
  • LETGS ( 1-180 ?)
  • Spectral resolution between 0.012 ? and 0.05 ?
  • Long wavelength range
  • Low effective area
  • Non-simultaneous observations

14
Observational campaign
RGS 137 ks July 2001
  • Simultaneous UV and X-ray observations

HETGS 170 ks Jan. 2002
LETGS 340 ks Jan. 2002
HST STIS 21 ks Jan. 2002
15
UV spectra
  • Broad emission lines FWHM8000 km/s
  • Narrow emission lines FWHM1000 km/s
  • Absorption lines FWHM100 km/s
  • 5 ? outflow v
  • Lowly ionized absorber
  • Arav et al. 2001, 2003, Crenshaw et al. 2003,
    Brotherton et al. 2002

16
Absorption components
Outflow velocity FWHM Log NC IV Log NN V
166 km/s 61 km/s 17.76 m-2 18.16 m-2
336 km/s 145 km/s 18.43 m-2 18.86 m-2
530 km/s 159 km/s 17.97 m-2 18.94 m-2
667 km/s 43 km/s 17.75 m-2 18.16 m-2
1041 km/s 222 km/s 18.05 m-2 18.44 m-2
17
UV spectra dusty absorber
  • Fit 1 ionization parameter per velocity component
  • In order that all 4 lines fit play around with
    abundances
  • Abundance ratios could be explained if some C,
    Mg, Si and Fe are stored in dust

C 0.35
N 1
O 0.75
Mg 0.2
Si 0.06
Fe 0.05
But multiple ionization parameters per
velocity component !
18
UV spectra results
  • Crenshaw et al. 2003
  • Dusty absorber
  • log NOVI20.26 m-2
  • log NOVIII20.20 m-2
  • Arav et al. 2002,2003
  • FUSElog NOVI19.69 m-2
  • Non-black saturation
  • Lower limit to column density

19
X-ray spectra
  • Combine HETGS resolution with ? range LETGS
  • Probe low to highly ionized absorber

20
Are the absorbers seen in the UV and the X-rays
the same ?
21
Velocity structure
  • Resolve the highest UV outflow v for 6 ions
  • Same outflow velocity structure as the UV

22
Ionization parameter
  • Detect O VI and lower ionized ions
  • log NO VI20.6 m-2
  • Inferred NH 1024 m-2
  • Order of magnitude more than detected in UV

23
Comparison
  • Same velocity structure, same ionization
  • Different column densities
  • Possible solution (Arav et al. 2002)
  • The absorber does not cover the NELs
  • ? Non-black saturation, underestimate NH
  • Velocity dependent covering factor in the UV
  • UV and X-ray absorber are the same

24
Velocity structure
  • If we measure 1 outflow v
  • Higher ionized ions have higher outflow
    velocities

25
  • Ionization structure of velocity components

HST STIS
FUSE
26
Ionization structure of the absorber
  • Both models require clouds in pressure
    equilibrium.
  • Pressure equilibrium implies several separate
    components with a different ionization parameter.

27
Ionization structure
  • Iron is best indicator of ionization
  • H abundance 10
  • Lower ionized iron ionization is uncertain
  • (Netzer et al. 2003)

28
Ionization structure
  • RGS data
  • Fe only
  • Model with 3,4 and 5 ionization components

29
Pressure equilibrium
  • ? L/ (4pcr2P)
  • 0.961x104 ?/T
  • L luminosity, r distance
  • c speed of light
  • P ideal gas pressure
  • P nkT
  • T temperature
  • In ? versus T plot means vertical section
    constant nT

30
Ionization structure
  • Are the different ionization states in pressure
    equilibrium?

31
Continuous ionization distribution
  • Assume solar abundances
  • Continuous distribution over 3.5 orders in
    ?
  • dNH/dln??a
  • a0.400.05

32
Spectral variability low state
  • New observation
  • March 15 2005
  • Low hard state
  • Preliminary results
  • M. Fenovcík

33
Spectral variability low state
  • Stronger OV, O III
  • Noisy O IV
  • Column density of O VI, O VII and O VIII did not
    vary
  • Supports continuum ionization model
  • Hard to explain in clouds in pressure equilibrium
    model

Marian Fenovcík, in prep.
34
Spectral variability NGC 3783
RGS
EPIC pn
  • Higher ? absorber is variable, while low ? is not
    in NGC 3783 XMM data
  • (Behar et al. 2003, Reeves et al. 2004)

35
Geometry of the absorber
36
Geometry of the wind
v (km/s) -166 -1040
?1 0.0007 0.0001
?1000 0.7 0.1
37
Geometry of the absorber
  • Narrow streams
  • Dense core lowly ionized
  • One stream per outflow velocity component
    observed
  • Gives asymmetric line profile

Arav et al., 1999, ApJ, 516, 27
38
Can mass escape?
  • Important for the enrichment of the IGM and AGN
    feedback
  • vesc (2GMBH/r)1/2
  • MBH 6.8 107 Mo (Wandel 2002)
  • v 166 km/s to 1041 km/s
  • r (5.8/vr2) 105 pc
  • Assuming vr 1000 km/s ?r 0.6 pc
  • Assuming all mass escapes and mass loss mass
    accretion Mloss 0.3 M0/yr

39
Broad emission lines
  • Very weak
  • O VII triplet
  • Expected from optical and UV ionization

40
Future work
Has the ionization a cut-off, or is most of the
gas completely ionized?
ASTROE-2 Launch summer 2005 High resolution high
energy grating Study the highly ionized universe
41
Conclusions
  • The UV and X-ray absorbers are the same
  • The absorbers are not in pressure equilibrium
  • The ionization structure is likely continuous
    spanning 3.5 orders in ?
  • The outflow occurs in narrow steamers
  • Likely, part of the outflow escapes
Write a Comment
User Comments (0)
About PowerShow.com