Martian ice cloud formation in a GCMdriven detailed microphysical model

1 / 23
About This Presentation
Title:

Martian ice cloud formation in a GCMdriven detailed microphysical model

Description:

Belgian Institute for Space Aeronomy BIRA-IASB (Belgium) ... Osiris/Rosetta. Daerden et al: Mars water ice cloud modeling | Mars Water Cycle Workshop, 21-23 ... –

Number of Views:27
Avg rating:3.0/5.0
Slides: 24
Provided by: Etie7
Category:

less

Transcript and Presenter's Notes

Title: Martian ice cloud formation in a GCMdriven detailed microphysical model


1
Martian ice cloud formation in a GCM-driven
detailed microphysical model
  • Frank Daerden (_at_aeronomie.be)
  • C. Verhoeven, D. Moreau
  • N. Mateshvili, D. Fussen
  • Belgian Institute for Space Aeronomy BIRA-IASB
    (Belgium)
  • A. Akingunola, J.C. McConnell, J.W. Kaminski
  • York University (Canada)
  • N. Larsen
  • Danish Meteorological Institute DMI (Denmark)

2
1. Introduction
  • Model heritage PSCBox
  • detailed microphysical box model for terrestrial
    PSC and cirrus Larsen, 2000
  • Size-bin resolved, Eulerian
  • Explicit description of homogeneous and
    heterogeneous nucleation condensation/sublimation
    sedimentation optical calculations gas-phase
    mass balances heterogeneous chemistry
  • Fully online coupled in 3D-CTM Daerden et al,
    2007 driven by external fields (ECMWF, GCM,
    ...)

3
2. Model description
  • Adaptation to Mars MARSBOX
  • 2 particle types Dust and Ice
  • Dust particles serve as cloud condensation nuclei
  • Dust generic, homogeneous composition
    (?2.5.103kg/m3)
  • Ice particle hexagonal cilinders with aspect
    ratio 2
  • 60 size bins, rmin 10-3µm, rmax103µm

4
2. Model description (ctd)
  • Dust initialization
  • Vertical eddy diffusion Krasnopolsky, 1993
  • No dust loss at boundaries
  • Steady-state assumption size-dependent Conrath
    formula
  • where
  • q(z,r)part/kgair at altitude z for particle
    size r
  • ?0/40 terminal fall velocity at altitude 0/40km
  • H atmospheric scale height (H10km)
  • To be solved sequentially from the surface upwards

5
2. Model description (ctd)
  • q(z0,r) is assumed lognormal with parameters
  • ? 0.4 (various sources)
  • rm 0.2µm (gives ?0(r)0.03 - moderate dust
    load)
  • Nt 30/cm3 (gives ?0.2 - consistent with
    GCM)
  • Steady state verification 20 sol simulation, no
    ice
  • Consistency with SPICAM (rm Rannou et al 2006,
    ext Montmessin et al 2006)

6
3. Simulations and data
  • GCM driving GM3
  • Global Mars Multiscale Model Moudden
    McConnell, 2005
  • Box model stacked on GM3 vertical levels
    (?z1.2km)
  • ?t1/24 sol

H2Odriving H2OGM3,g H2OGM3,i - H2Obox,i
3D information into box model
7
3. Simulations and data (ctd)
  • Observations SPICAM/Mars Express, UV nadir mode
    Mateshvili et al, 2007

8
3. Simulations and data (ctd)
  • Simulations set-up
  • Focus on Tropical Cloud Belt season during MY27
  • 1 year of offline GM3 simulations with low dust
    load (?0.2)
  • In GM3 grid cells with high density of SPICAM
    data
  • Average diurnal cycle in bins of 10 Ls (20
    sols)
  • Sensitivity w.r.t. T and water budget

9
4. Results
  • Differences GM3/bulk ? MARSBOX/microphysics
  • Nucleation introduces delay in cloud formation
  • Cloud formation is limited by
  • nr. of available dust condensation nuclei
  • Supersaturation ratio
  • ? bulk scheme upper limit for cloud formation

10
4. Results (ctd)
  • Daily cycles some selected cases (Ls110-120)
  • 70E (Syrtis Major)
  • 62W (Xanthe)
  • 169E (Elysium)

11
4. Results (ctd)
  • Case 1 Syrtis Major 67.5E

12
4. Results (ctd)
  • Case 1 Syrtis Major 67.5E

13
4. Results (ctd)
  • Case 1 Syrtis Major 67.5E

14
4. Results (ctd)
  • Case 1 Syrtis Major 67.5E

15
4. Results (ctd)
  • Case 1 Syrtis Major 67.5E

16
4. Results (ctd)
  • Case 1 Syrtis Major 67.5E

17
4. Results (ctd)
  • Case 2 Xanthe

18
4. Results (ctd)
  • Case 2 Xanthe

19
4. Results (ctd)
  • Case 2 Xanthe

20
4. Results (ctd)
  • Case 3 Elysium

21
4. Results (ctd)
  • Case 3 Elysium

22
4. Results (ctd)
23
5. Conclusions
  • Cloud formation is highly sensitive to
    temperature and water vapor
  • Within small variations of GCM temperature and
    water budget, MARSBOX driven by GM3 is in many
    cases able to reproduce the SPICAM cloud optical
    thickness in the TCB
  • Bulk scheme overestimates the water content in
    clouds
Write a Comment
User Comments (0)
About PowerShow.com