Computational Electromagnetics - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

Computational Electromagnetics

Description:

Circuit(Network)(impedance,S parameters,power,gain... Huygens' Principal. Green's Theorem. RIP 2004. 7. Computational Electromagnetics. Definition ... – PowerPoint PPT presentation

Number of Views:157
Avg rating:3.0/5.0
Slides: 19
Provided by: bbsDar
Category:

less

Transcript and Presenter's Notes

Title: Computational Electromagnetics


1
Computational ElectromagneticsComputational
Bioimaging
  • Qianqian Fang
  • Research In Progress (RIP 2004)

2
Outline
  • Macroscopic Electromagnetics
  • Computational Electromagnetics (CEM)
  • Inverse Problems
  • Computational Biomedical Imaging (CBI)
  • CBI and CEM

3
From DC to Light
Circuit Theory
Matrix Electromagnetics
Wave Electromagnetics
Quantum Mechanics
Optics
http//www.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSp
ec2.html
4
Electromagnetism
  • Macroscopic Electromagnetism
  • Foundation
  • Core equations
  • Core theorems
  • Wave (amplitudes,phase,wavelength,polarization..)
  • Radiation
  • Scattering
  • Circuit(Network)(impedance,S parameters,power,gain
    ...)
  • Distributed parameter circuit networks analysis
  • Filter design
  • Quantum Electro-Dynamics (QED)

5
Macroscopic Electromagnetics
Wave equations Transient EM wave/ Time-Harmonic
EM wave/ Time/Frequency domain/ Vector/Scalar
Helmholtz equation Vector/Scalar Wave equation
Core
Energy Conservation Poynting theorem
Maxwell equations
Momentum Conservation
Constitutive relations
Boundary Conditions
Auxiliary Functions vector/scalar elec.
potential vector/scalar mag. potential vector/scal
ar Herzian potential Scalar/dyadic Greens
function
Material Properties isotropic/anisotropic/ Bi-ani
sotropic/uniaxial/ Positive/negative
axial/ Dispersive/stationary
Lorenz force
Mechanics
6
Electromagnetics Core Theorems
Duality Principal
Uniqueness Theorem
Greens Theorem
Reciprocity Theorem
Huygens Principal
Equivalence Theorem
7
Computational Electromagnetics
  • Definition
  • Numerical lt-gt Linearization
  • High-frequency-gt geometric approx
  • Low-frequency-gt difference/variational

8
Computational Electromagnetics
9
Forward Integration
  • Integration Equation MoM, BEM, EFIE/MFIE/CFIE

http//www.lcp.nrl.navy.mil/cfd-cta/CFD3/img_galle
ry/f117/
10
Forward Differential
Finite Element Method (FEM)
Finite Difference-Time Domain (FDTD)
http//www.remcom.com/xfdtd6/
http//sdcd.gsfc.nasa.gov/ESS/annual.reports/ess98
/kma.html
11
Comparison IE/DE
Integral Equ. Methods Diff. Equ. Methods
Math foundations Gauss/Stokes Theorem Greens Theorem Maxwell equation Variational Principal
Problem Dimensions n-1 n
Constains Global Local
Linearization Dense matrix equation Sparse matrix equation
Discretization Surface mesh Volume mesh
Mesh truncation (RBC/ABC) Typically no need Needed for unbounded problems
Pros Large problems, far fields Near field, inhomogeneous
Cons Inhomogeneous Large unknown
12
Inverse Problems
  • Inverse Source Problems
  • Inverse Scattering Problems
  • Mixed Inverse Problems

13
Approaches of Solving Inverse Problems
  • Operator Equation
  • Root Finding
  • Optimization

Misfit functional
Regularization functional
14
Biomedical Imaging
  • Principal
  • Encoding/Decoding of information
  • Imaging Agent
  • Functional Imaging and Structural Imaging

Particles Particles SPECT(photons),PET(positron)
Wave Mechanical Ultrasound,Elastography,Seismology
Wave Electromagnetic EIT,MWI,NIR,CT,X-Ray,MR,SAR
15
CBI and CEM
  • CT -gt Linear attenuation -gt Filted
    Backprojection -gt Linear Inverse problem
  • MRI -gt Inverse Fourier Transform
  • Ultrasound
  • EIT, MWI, NIR, GPR, -gt Nonlinear propagation
    -gt iterative reconstructions -gt Nonlinear inverse
    problem

16
Reference
  • W.C. Chew, Waves and Fields in Inhomogeneous
    Media, Van Nostrand Reinhold, New York, 1990.
  • J.A. Kong, Electromagnetic Wave Theory,
    Wiley-Interscience, New York, 1990.
  • Yvon Jarny, The Inverse Engineering Handbook,
    Chapter 3, CRC Press, 2003.
  • C. Vogel, Computational methods for inverse
    problem, SIAM, Philadelphia, 2002.

17
Acknowledgement
  • Prof. Paul M. Meaney
  • Prof. Keith D. Paulsen
  • Margaret Fanning
  • Dun Li
  • Sarah A. Pendergrass
  • Colleen J. Fox
  • Timothy Raynolds
  • Thanks for all my friends at Thayer School.

18
Questions?
Write a Comment
User Comments (0)
About PowerShow.com