Title: Computational Electromagnetics
1Computational ElectromagneticsComputational
Bioimaging
- Qianqian Fang
- Research In Progress (RIP 2004)
2Outline
- Macroscopic Electromagnetics
- Computational Electromagnetics (CEM)
- Inverse Problems
- Computational Biomedical Imaging (CBI)
- CBI and CEM
3From DC to Light
Circuit Theory
Matrix Electromagnetics
Wave Electromagnetics
Quantum Mechanics
Optics
http//www.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSp
ec2.html
4Electromagnetism
- Macroscopic Electromagnetism
- Foundation
- Core equations
- Core theorems
- Wave (amplitudes,phase,wavelength,polarization..)
- Radiation
- Scattering
- Circuit(Network)(impedance,S parameters,power,gain
...) - Distributed parameter circuit networks analysis
- Filter design
- Quantum Electro-Dynamics (QED)
5Macroscopic Electromagnetics
Wave equations Transient EM wave/ Time-Harmonic
EM wave/ Time/Frequency domain/ Vector/Scalar
Helmholtz equation Vector/Scalar Wave equation
Core
Energy Conservation Poynting theorem
Maxwell equations
Momentum Conservation
Constitutive relations
Boundary Conditions
Auxiliary Functions vector/scalar elec.
potential vector/scalar mag. potential vector/scal
ar Herzian potential Scalar/dyadic Greens
function
Material Properties isotropic/anisotropic/ Bi-ani
sotropic/uniaxial/ Positive/negative
axial/ Dispersive/stationary
Lorenz force
Mechanics
6Electromagnetics Core Theorems
Duality Principal
Uniqueness Theorem
Greens Theorem
Reciprocity Theorem
Huygens Principal
Equivalence Theorem
7Computational Electromagnetics
- Definition
- Numerical lt-gt Linearization
- High-frequency-gt geometric approx
- Low-frequency-gt difference/variational
8Computational Electromagnetics
9Forward Integration
- Integration Equation MoM, BEM, EFIE/MFIE/CFIE
http//www.lcp.nrl.navy.mil/cfd-cta/CFD3/img_galle
ry/f117/
10Forward Differential
Finite Element Method (FEM)
Finite Difference-Time Domain (FDTD)
http//www.remcom.com/xfdtd6/
http//sdcd.gsfc.nasa.gov/ESS/annual.reports/ess98
/kma.html
11Comparison IE/DE
Integral Equ. Methods Diff. Equ. Methods
Math foundations Gauss/Stokes Theorem Greens Theorem Maxwell equation Variational Principal
Problem Dimensions n-1 n
Constains Global Local
Linearization Dense matrix equation Sparse matrix equation
Discretization Surface mesh Volume mesh
Mesh truncation (RBC/ABC) Typically no need Needed for unbounded problems
Pros Large problems, far fields Near field, inhomogeneous
Cons Inhomogeneous Large unknown
12Inverse Problems
- Inverse Source Problems
- Inverse Scattering Problems
- Mixed Inverse Problems
13Approaches of Solving Inverse Problems
- Operator Equation
- Root Finding
- Optimization
Misfit functional
Regularization functional
14Biomedical Imaging
- Principal
- Encoding/Decoding of information
- Imaging Agent
- Functional Imaging and Structural Imaging
Particles Particles SPECT(photons),PET(positron)
Wave Mechanical Ultrasound,Elastography,Seismology
Wave Electromagnetic EIT,MWI,NIR,CT,X-Ray,MR,SAR
15CBI and CEM
- CT -gt Linear attenuation -gt Filted
Backprojection -gt Linear Inverse problem - MRI -gt Inverse Fourier Transform
- Ultrasound
- EIT, MWI, NIR, GPR, -gt Nonlinear propagation
-gt iterative reconstructions -gt Nonlinear inverse
problem
16Reference
- W.C. Chew, Waves and Fields in Inhomogeneous
Media, Van Nostrand Reinhold, New York, 1990. - J.A. Kong, Electromagnetic Wave Theory,
Wiley-Interscience, New York, 1990. - Yvon Jarny, The Inverse Engineering Handbook,
Chapter 3, CRC Press, 2003. - C. Vogel, Computational methods for inverse
problem, SIAM, Philadelphia, 2002.
17Acknowledgement
- Prof. Paul M. Meaney
- Prof. Keith D. Paulsen
- Margaret Fanning
- Dun Li
- Sarah A. Pendergrass
- Colleen J. Fox
- Timothy Raynolds
- Thanks for all my friends at Thayer School.
18Questions?