Title: Cosmology with SNAP
1Cosmology with SNAP
Eric Linder Berkeley Lab
G. Aldering, C. Bebek, W. Carithers, S. Deustua,
W. Edwards, J. Frogel, D. Groom, S. Holland, D.
Huterer, D. Kasen, R. Knop, R. Lafever, M. Levi,
E. Linder, S. Loken, P. Nugent, S. Perlmutter, K.
Robinson (Lawrence Berkeley National
Laboratory) E. Commins, D. Curtis, G. Goldhaber,
J. R. Graham, S. Harris, P. Harvey, H. Heetderks,
A. Kim, M. Lampton, R. Lin, D. Pankow, C.
Pennypacker, A. Spadafora, G. F. Smoot (UC
Berkeley) C. Akerlof, D. Amidei, G. Bernstein, M.
Campbell, D. Levin, T. McKay, S. McKee, M.
Schubnell, G. Tarle , A. Tomasch (U. Michigan)
P. Astier, J.F. Genat, D. Hardin, J.- M. Levy,
R. Pain, K. Schamahneche (IN2P3) A. Baden, J.
Goodman, G. Sullivan (U.Maryland) R. Ellis, A.
Refregier (CalTech) A. Fruchter (STScI) L.
Bergstrom, A. Goobar (U. Stockholm) C. Lidman
(ESO) J. Rich (CEA/DAPNIA) A. Mourao (Inst.
Superior Tecnico,Lisbon)
2Probing Dark Energy Models
3Supernova Requirements
4From Science Goalsto Project Design
Science
- Measure ?M and ?
- Measure w and w (z)
Systematics Requirements
Statistical Requirements
- Identified and proposed systematics
- Measurements to eliminate / bound each one to
/0.02 mag
- Sufficient (2000) numbers of SNe Ia
- distributed in redshift
- out to z lt 1.7
Data Set Requirements
- Discoveries 3.8 mag before max
- Spectroscopy with S/N10 at 15 Ã… bins
- Near-IR spectroscopy to 1.7 ?m
Satellite / Instrumentation Requirements
- 2-meter mirror Derived requirements
- 1-square degree imager High Earth orbit
- Spectrograph 50 Mb/sec bandwidth (0.35 ?m
to 1.7 ?m)
5Mission Design
- SNAP a simple dedicated experiment to study the
dark energy - Dedicated instrument, essentially no moving parts
- Mirror 2 meter aperture sensitive to light from
distant SN - Photometry with 1x 1 billion pixel mosaic
camera, high-resistivity, rad-tolerant p-type
CCDs and, HgCdTe arrays. (0.35-1.7 mm) - Integral field optical and IR spectroscopy
0.35-1.7 mm, 2x2 FOV
6GigaCAM
- GigaCAM, a one billion pixel array
- Approximately 1 billion pixels
- 140 Large format CCD detectors required, 30
HgCdTe Detectors - Larger than SDSS camera, smaller than H.E.P.
Vertex Detector (1 m2) - Approx. 5 times size of FAME (MiDEX)
7Focal Plane Layout with Fixed Filters
8Step and Stare and Rotation
9High-Resistivity CCDs
- New kind of CCD developed at LBNL
- Better overall response than more costly
thinned devices in use - High-purity silicon has better radiation
tolerance for space applications - The CCDs can be abutted on all four sides
enabling very large mosaic arrays - Measured Quantum Efficiency at Lick Observatory
(R. Stover)
10LBNL CCDs at NOAO
Science studies to date at NOAO using LBNL CCDs
- Near-earth asteroids
- Seyfert galaxy black holes
- LBNL Supernova cosmology
Blue is H-alpha Green is SIII 9532Ã… Red is HeII
10124Ã….
Cover picture taken at WIYN 3.5m with LBNL 2048
x 2048 CCD (Dumbbell Nebula, NGC 6853)
See September 2001 newsletter at
http//www.noao.edu
11Integral Field Unit Spectrograph Design
SNAP Design
Camera
Detector
Prism
Collimator
Slit Plane
12Lightcurves and Spectra from SNAP
- Goddard/Integrated Mission Design
- Center study in June 2001
- no mission tallpoles
- Goddard/Instrument Synthesis and
- Analysis Lab. study in Nov. 2001
- no technology tallpoles
13Science Reach
- Key Cosmological Studies
- Type II supernova
- Weak lensing
- Strong lensing
- Galaxy clustering
- Structure evolution
- Star formation/reionization
14A Resource for the Science Community
- SNAP main survey will be 4000x larger (and as
deep) - than the biggest HST deep survey, the ACS
survey - Complementary to NGST target selection for rare
objects - Can survey 1000 sq. deg. in a year to I29 or
J28 (AB mag) - Archive data distributed
- Guest Survey Program
- Whole sky can be observed every few months
- Galaxy populations and morphology to coadded
m31 - Quasars to redshift 10
- Epoch of reionization through Gunn-Peterson
effect - Lensing projects
- Mass selected cluster catalogs
- Evolution of galaxy-mass correlation function