Title: But
1But
- Why not to have a syntax built on the same
principles as those of semantic composition?
2syntactic categories
- a, an np/n
- very (n/n)/(n/n)
- young n/n
- student, sonata n
- plays (np\s)/np
3 A very young student plays a sonata
4Reduction rules
- Right cancellation
- Left cancellation
-
5Definition of syntactic types
- Primitive types
- ex np, n, s (a finite set)
- Complex types
- if A and B are types,
- - A/B is a type
- - B\A is a type
-
6learning of categories
- Start marie np, marie dort s
- Marie dort s
- np s
7 - Start marie np, marie dort s
- Marie dort s
- np np\s s
8 - dort profondément np\s
- np\s np\s
9 - dort profondément np\s
- np\s (np\s)\(np\s) np\s
- une femme dort profondément s
- np\s
10 - dort profondément np\s
- np\s (np\s)\(np\s) np\s
- une femme dort profondément s
- np np\s
11 - dort profondément np\s
- np\s (np\s)\(np\s) np\s
- une femme dort profondément s
- s/(np\s) np\s
12functional interprétation
B/A or A\B functions from A to B
B/A A ? B
C/B B/A ? C/A
13other rules
- type raising
- associativity
- composition
14Natural Deduction
/ - elimination
/- introduction
15B hypothesis labelled ni
the hypothesis ni is discharged
16Example type-raisingÂ
A\B1
A
B/(A\B)
17Le livre que Pierre lit
sn1
18but
- natural deductions are precisely ?-terms !
19 aB
f A/B
f(a)A
xBi
G
uA
i
lx.uA/B
20Pierre lit Tintin
(sn\s)/sn
sn
lx.ly.lit(y,x)
psn
t
(ly.lit(y,t))(p) s
21Pierre lit un livre(Peter reads a book)
22un livre(a book)
23Pierre lit (Peter reads)
24Pierre lit un livre
lu.lit(p, u) s/sn
25Curry-Howard
- deduction
- / or \ - elimination
- / or \ - introduction
- hypothesis
- discharged hypothesis
- normalisation
- l-term
- application
- abstraction
- variable
- bound variable
- b-reduction
-
26Normalisation and ?-reduction
- A natural deduction is said to be normal whenever
it does not contain an introduction rule followed
by an elimination rule
A
?
A
B/A
B
27Normalisation and ?-reduction
- A natural deduction is said to be normal whenever
it does not contain an introduction rule followed
by an elimination rule
A
B/A
B
28Normalisation and ?-reduction
- A natural deduction is said to be normal whenever
it does not contain an introduction rule followed
by an elimination rule
A
A
B/A
B
29Normalisation and ?-reduction
- A natural deduction is said to be normal whenever
it does not contain an introduction rule followed
by an elimination rule
B/A
B
30Normalisation and ?-reduction
?B?A/xA
(?xA.?B ?A)
31sequent calculus
(intuitionist) sequent
consequent
antecedent
32A/B
Q
To prove
amounts to prove
Q
B
and then
A
33Lambek calculus(with product)(sequents)
34A fundamental restrictionnon empty antecedents
- a simple exercise
- a very simple exercise
- a very exercise
n
np
n
n
n
n
np
,
/
,
/
a
np
n
n
np
,
,
/
a
n
n
...
a
,
,
,
35What sequent calculus reveals to us
- cf. classical logic (some rules)
- (note the symmetries)
36- but also (on the two sides)
- axiom and cut-rule
Permutation
Weakening
Contraction
37 - Lambek calculus intuitionistic logic WITHOUT A,
C, P - Intuitionistic multiplicative linear logic
- ( restriction on non empty antecedents)
38subformula property
A
A
B
B
B/A
A\B
B
A
A
B
A/B
B\A
39le livre que Pierre lit(the book that Peter
reads)
le
livre
que
Pierre
lit
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45(No Transcript)
46Butcut-rule
A
A
47Fortunately Cut-elimination theorem
Cut L
L
48Labelled Lambek calculus
a
f(a)
f
x
u
lx.u
49Pierre lit Tintin(Pierre reads Tintin)
50Pierre lit Tintin
51Pierre lit Tintin
52Pierre lit Tintin
53Pierre lit Tintin
54Pierre lit Tintin
55General properties of Lambek grammars
- Weak equivalence with CFGs
- A result by M. Pentus (1993)
- No strong equivalence with CFGs
- A result by H. J. Tiede (1998)
- Polynomiality? No result yet
- probably NP complete
56Limitations
- They are numerous
- only peripheral extraction
- The girl who I met OK
- The girl who I met yesterday (or on the beach)
not OK - coordination and polymorphic types
- The mathematician whom Gottlob admired and
Kazimierz detested OK - The mathematician whom Gottlob admired Jim and
Kazimierz detested also OK!
57 - parasitic gaps
- The book John filed _ without reading _
- (linearity properties)
- empty signs
- The book John read
- (cf. non empty antecedents)
58Extensions
- Multimodal Categorial Grammar (Moortgat, Oehrle,
Morrill and their students) - ref. Categorial Type Logics in
- Van Benthem and ter Meulen (HLL)
- see further
59A Â cousinÂ
- Minimalist Grammars
- Inspired by Chomskys minimalist program
- Ed. Stabler
- they have also type-logical formulations
- W. Vermaat
- Retoré Lecomte
see further
or another day
60to sum up
- We get rid of  syntactic rules
- by means of a logic
- which accepts a natural deduction presentation
(because intuitionist) - proofs are ?-terms
- and also a sequent calculus
- convenient for the proof search
- a logic which is linear (resource sensitive)