But - PowerPoint PPT Presentation

About This Presentation
Title:

But

Description:

But... Why not to have a syntax built on the same principles ... student, sonata : n. plays : (nps)/np. A very young student plays a sonata. np/n (n/n)/(n/n) ... – PowerPoint PPT presentation

Number of Views:21
Avg rating:3.0/5.0
Slides: 61
Provided by: AlainL66
Category:
Tags: sonata

less

Transcript and Presenter's Notes

Title: But


1
But
  • Why not to have a syntax built on the same
    principles as those of semantic composition?

2
syntactic categories
  • a, an np/n
  • very (n/n)/(n/n)
  • young n/n
  • student, sonata n
  • plays (np\s)/np

3

A very young student plays a sonata
4
Reduction rules
  • Right cancellation
  • Left cancellation

5
Definition of syntactic types
  • Primitive types
  • ex np, n, s (a finite set)
  • Complex types
  • if A and B are types,
  • - A/B is a type
  • - B\A is a type

6
learning of categories
  • Start marie np, marie dort s
  • Marie dort s
  • np s

7
  • Start marie np, marie dort s
  • Marie dort s
  • np np\s s

8
  • dort profondément np\s
  • np\s np\s

9
  • dort profondément np\s
  • np\s (np\s)\(np\s) np\s
  • une femme dort profondément s
  • np\s

10
  • dort profondément np\s
  • np\s (np\s)\(np\s) np\s
  • une femme dort profondément s
  • np np\s

11
  • dort profondément np\s
  • np\s (np\s)\(np\s) np\s
  • une femme dort profondément s
  • s/(np\s) np\s

12
functional interprétation
B/A or A\B functions from A to B
B/A A ? B
C/B B/A ? C/A
13
other rules
  • type raising
  • associativity
  • composition

14
Natural Deduction
/ - elimination
/- introduction
15
B hypothesis labelled ni
the hypothesis ni is discharged
16
Example type-raising 
A\B1
A
B/(A\B)
17
Le livre que Pierre lit
sn1
18
but
  • natural deductions are precisely ?-terms !

19

aB
f A/B
f(a)A
xBi
G
uA
i
lx.uA/B
20
Pierre lit Tintin
(sn\s)/sn
sn
lx.ly.lit(y,x)
psn
t
(ly.lit(y,t))(p) s
21
Pierre lit un livre(Peter reads a book)
22
un livre(a book)
23
Pierre lit (Peter reads)
24
Pierre lit un livre
lu.lit(p, u) s/sn
25
Curry-Howard
  • deduction
  • / or \ - elimination
  • / or \ - introduction
  • hypothesis
  • discharged hypothesis
  • normalisation
  • l-term
  • application
  • abstraction
  • variable
  • bound variable
  • b-reduction

26
Normalisation and ?-reduction
  • A natural deduction is said to be normal whenever
    it does not contain an introduction rule followed
    by an elimination rule

A
?
A
B/A
B
27
Normalisation and ?-reduction
  • A natural deduction is said to be normal whenever
    it does not contain an introduction rule followed
    by an elimination rule

A
B/A
B
28
Normalisation and ?-reduction
  • A natural deduction is said to be normal whenever
    it does not contain an introduction rule followed
    by an elimination rule

A
A
B/A
B
29
Normalisation and ?-reduction
  • A natural deduction is said to be normal whenever
    it does not contain an introduction rule followed
    by an elimination rule

B/A
B
30
Normalisation and ?-reduction
?B?A/xA
(?xA.?B ?A)
31
sequent calculus
(intuitionist) sequent
consequent
antecedent
32
A/B
Q
To prove
amounts to prove
Q
B
and then
A
33
Lambek calculus(with product)(sequents)

34
A fundamental restrictionnon empty antecedents
  • a simple exercise
  • a very simple exercise
  • a very exercise

n
np
n
n
n
n
np
,
/
,
/
a
np
n
n
np
,
,
/
a
n
n
...
a
,
,
,
35
What sequent calculus reveals to us
  • cf. classical logic (some rules)
  • (note the symmetries)

36
  • but also (on the two sides)
  • axiom and cut-rule

Permutation
Weakening
Contraction
37
  • Lambek calculus intuitionistic logic WITHOUT A,
    C, P
  • Intuitionistic multiplicative linear logic
  • ( restriction on non empty antecedents)

38
subformula property

A
A
B
B
B/A
A\B
B
A
A
B
A/B
B\A
39
le livre que Pierre lit(the book that Peter
reads)
le
livre
que
Pierre
lit
40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
Butcut-rule

A
A
47
Fortunately Cut-elimination theorem

Cut L
L
48
Labelled Lambek calculus

a
f(a)
f
x
u
lx.u
49
Pierre lit Tintin(Pierre reads Tintin)
50
Pierre lit Tintin
51
Pierre lit Tintin
52
Pierre lit Tintin
53
Pierre lit Tintin
54
Pierre lit Tintin
55
General properties of Lambek grammars
  • Weak equivalence with CFGs
  • A result by M. Pentus (1993)
  • No strong equivalence with CFGs
  • A result by H. J. Tiede (1998)
  • Polynomiality? No result yet
  • probably NP complete

56
Limitations
  • They are numerous
  • only peripheral extraction
  • The girl who I met OK
  • The girl who I met yesterday (or on the beach)
    not OK
  • coordination and polymorphic types
  • The mathematician whom Gottlob admired and
    Kazimierz detested OK
  • The mathematician whom Gottlob admired Jim and
    Kazimierz detested also OK!

57
  • parasitic gaps
  • The book John filed _ without reading _
  • (linearity properties)
  • empty signs
  • The book John read
  • (cf. non empty antecedents)

58
Extensions
  • Multimodal Categorial Grammar (Moortgat, Oehrle,
    Morrill and their students)
  • ref. Categorial Type Logics in
  • Van Benthem and ter Meulen (HLL)
  • see further

59
A  cousin 
  • Minimalist Grammars
  • Inspired by Chomskys minimalist program
  • Ed. Stabler
  • they have also type-logical formulations
  • W. Vermaat
  • Retoré Lecomte

see further
or another day
60
to sum up
  • We get rid of  syntactic  rules
  • by means of a logic
  • which accepts a natural deduction presentation
    (because intuitionist)
  • proofs are ?-terms
  • and also a sequent calculus
  • convenient for the proof search
  • a logic which is linear (resource sensitive)
Write a Comment
User Comments (0)
About PowerShow.com