Title: Evolution of bacterial regulatory systems
1Evolution of bacterial regulatory systems
- Mikhail Gelfand
- Institute for Information Transmission Problems,
RAS - BGRS-2004, Novosibirsk
2Early analyses (BGRS98, 00, 02)
- Making good predictions with bad rules
- Basic assumption regulons are conserved gt
- Consistency check sites upstream of orthologous
genes are correct false positives are scattered
at random - Validation of individual sites
- Validation of signals candidate signals for
orthologous factors are correct if similar
3Multiple genomes taxon-specific
regulation multiple interacting systems
evolution of regulation
- Evolution of orthologous regulatory sites
- Co-evolution of transcription factors and their
binding signals - Evolution of regulons (sets of co-regulated
genes) - Evolution of regulatory systems
4??? ??? ??????????. ? ???? ?????. ??????
????????? ?? ???? ????. ???? ???????????? ?????
??????. ??????? ????????, ??? ??? ??????.?????
????????
- A list of some observations. In a corner, its
warm. - A glance leaves an imprint on anything its dwelt
on. - Water is glasss most public form.
- Man is more frightening than its skeleton.
- Joseph Brodsky
5Conservation of non-consensus positions in
orthologous sites
regulatory site LexA ? lexAconsensus nucleotides
are in caps
wrong consensus?
6PurR ? purL
PurR ? purM
7Non-consensus positions are more conserved than
synonymous codon positions
8Non-consensus positions may be more conserved
than consensus positions
9Regulators and their signals
- Subtle changes at close evolutionary distances
- Changes in spacing / geometry of dimers
- Correlation between contacting nucleotides and
amino acid residues - Cases of conservation at surprisingly large
distances
10Zinc repressors
nZUR-?
nZUR-?
GAAATGTTATANTATAACATTTC
GATATGTTATAACATATC
GTAATGTAATAACATTAC
TTAACYRGTTAA
AdcR
pZUR
TAAATCGTAATNATTACGATTTA
11Alignment of nZUR binding signals
- GTAATGTAA TAACATTAC (alpha most genera)
- GATATGTTA TAACATATC (alpha Rhodobacter)
- GAAATGTTATANTATAACATTTC (gamma)
- GaaATGTtA-----TAACATttC (consensus of consensi)
12CRP/FNR family of regulators
13Correlation between contacting nucleotides and
amino acid residues
- CooA in Desulfovibrio spp.
- CRP in Gamma-proteobacteria
- HcpR in Desulfovibrio spp.
- FNR in Gamma-proteobacteria
Contacting residues REnnnR TG 1st arginine GA
glutamate and 2nd arginine
DD COOA ALTTEQLSLHMGATRQTVSTLLNNLVR DV COOA
ELTMEQLAGLVGTTRQTASTLLNDMIR EC CRP
KITRQEIGQIVGCSRETVGRILKMLED YP CRP
KXTRQEIGQIVGCSRETVGRILKMLED VC CRP
KITRQEIGQIVGCSRETVGRILKMLEE DD HCPR
DVSKSLLAGVLGTARETLSRALAKLVE DV HCPR
DVTKGLLAGLLGTARETLSRCLSRMVE EC FNR
TMTRGDIGNYLGLTVETISRLLGRFQK YP FNR
TMTRGDIGNYLGLTVETISRLLGRFQK VC FNR
TMTRGDIGNYLGLTVETISRLLGRFQK
TGTCGGCnnGCCGACA
TTGTGAnnnnnnTCACAA
TTGTgAnnnnnnTcACAA
TTGATnnnnATCAA
14The correlation holds for other factors in the
family
15The LacI family of transcrip-tional regulators
(each branch represents a subfamily)
16 and their signals
17BirA regulator of biotin biosynthesis and
transport in eubacteria and archaea
Profile 2 Gram-negative bacteria
Profile 1 Gram-positive bacteria, Archaea
18Evolution of regulons and regulatory systems
- conserved cores
- taxon-specific marginal members
- migration of genes between interacting regulatory
systems - taxon-specific cross-regulation
- genome-specific operons and genomic loci
- complete change of regulatory mechanisms
19Genome loci for hyaluronate utilization in
invasive Streptococcus spp.
S. pyogenes, S. agalactiae
S. equi
S. pneumoniae TIGR4
S. pneumoniae R6
S. suis
20Respiration in gamma-proteobacteria1. Three
regulators, different regulatory cascades
Escherichia coli(experimental data)
Haemophilus influenzae, Pasteurella multocida,
A. actinomycetemcomitans
Haemophilus ducreyi, Vibrio spp.
21Respiration in gamma-proteobacteria2. New
genome/taxon-specific regulon members
Escherichia coli (known)
New, non-homologous regulon member
Yersinia pestis Fnr ArcA Yersinia
entercolitica Fnr Pasteurella
multocida Fnr ArcA NarP Actinobacillus
actinomycetemcomitans ArcA NarP Haemophilus
influenzae Fnr ArcA Haemophilus
ducreyi Fnr ArcA NarP Vibrio vulnificus
ArcA Vibrio parahaemolyticus ArcA
Vibrio cholerae Fnr ArcA Vibrio
fischeri ArcA
22Respiration in gamma-proteobacteria3. New
genome/taxon-specific regulon members, contd
Synthesis of molybdate cofactor
Yersinia pestis Fnr Yersinia
entercolitica Fnr ArcA Pasteurella
multocida Fnr ArcA Actinobacillus
actinomycetemcomitans Fnr NarP Haemophilus
influenzae Fnr NarP Haemophilus
ducreyi Fnr ArcA NarP Vibrio vulnificus
NarP Vibrio parahaemolyticus NarP
Vibrio cholerae NarP Vibrio
fischeri ArcA NarP
23Zinc repressors - recapitulation
nZUR-?
nZUR-?
GAAATGTTATANTATAACATTTC
GATATGTTATAACATATC
GTAATGTAATAACATTAC
TTAACYRGTTAA
AdcR
pZUR
TAAATCGTAATNATTACGATTTA
24Five regulatory systems for methionine
biosynthesis
- SAM-dependent RNA riboswitch
- Met-tRNA-dependent T-box (RNA)
- C,D,E. repressors of transcription
25Three methionine regulatory systems in
Gram-positive bacteria loss of S-box regulons
- S-boxes (riboswitch)
- Bacillales
- Clostridiales
- the Zoo
- Petrotoga
- actinobacteria (Streptomyces, Thermobifida)
- Chlorobium, Chloroflexus, Cytophaga
- Fusobacterium
- Deinococcus
- proteobacteria (Xanthomonas, Geobacter)
- Met-T-boxes (Met-tRNA-dependent attenuator)
- Lactobacillales
- MET-boxes (candidate transcription signal)
- Streptococcales
ZOO
Lact.
Strep.
Bac.
Clostr.
26Catabolism of gluconate in proteobacteria
27Three regulatory systemsone global (FruR), two
taxon-specific (GntR, PtxS)
ß
?1
Pseudomonas spp.
28Instead of conclusions
- Andrei A. Mironov (BGRS98,00,02,04)
- Anna Gerasimova (BGRS02,04)
- Olga Kalinina (BGRS02,04)
- Alexei Kazakov (BGRS02,04)
- Ekaterina Kotelnikova (BGRS02,04)
- Galina Kovaleva (BGRS04)
- Pavel Novichkov (BGRS00,02,04)
- Olga Laikova (BGRS02,04)
- Ekaterina Panina (BGRS00)(now at UCLA, USA)
- Elizabeth Permina (BGRS02,04)
- Dmitry Ravcheev (BGRS02,04)
- Alexandra B. Rakhmaninova (BGRS00)
- Dmitry Rodionov (BGRS00)
- Alexey Vitreschak (BGRS00,04)(visiting LORIA,
France)
- Howard Hughes Medical Institute
- Ludwig Institute of Cancer Research
- Russian Fund of Basic Research
- Programs Origin and Evolution of the Biosphere
and Molecular and Cellular Biology, Russian
Academy of Sciences