Title: Dipion Spectrum : e e- annihilations and t decays
1Dipion Spectrum ee-
annihilations and t decays
- M. Benayoun
- LPNHE Paris 6/7
2The Pion Form factor in ee- and t Data
- Since the advent of t data, disagreement with
ee- data - Large activity in identifying isospin symmetry
breaking in both ee- annihilation and t decay - Disagreement survived accounting for identified
isospin breaking corrections! - Is there a missing piece, a systematic effect (in
ee- or t data) or new physics?
3The Latest Account
-
- Inv. Mass dependent
- missing effect
M. Davier NP Proc. Supp. 169 (2007) 288
4The Latest Account
-
- Inv. Mass dependent
- missing effect !
- Is it isospin breaking?
M. Davier NP Proc. Supp. 169 (2007) 288
5Possible Missing Effect (?-?-f) Mixing
FFs New Data
Isospin 1 part of ?
Isospin 1 part of f
6Possible Missing Effect (?-?-f) Mixing
FFs New Data
Isospin 1 part of ?
Isospin 1 part of f
Isospin 0 part of ?0 ? Can it be s-dependent?
7OUTLINE
- A VMD-like Model HLS Model (briefly)
- Breaking of U(3)/SU(3) Symmetries (briefly)
- The Anomalous Sector (briefly)
- The Pion Form Factor in ee- Annihilation and t
Decay (Isospin Breaking) - Loop Transition Effects in ee- Physical ?0,
?, ? - Extended Data Sample submitted to fit, Why?
- Fit results Plots
- Conclusions
8OUTLINE
- A VMD-like Model HLS Model (briefly)
- Breaking of U(3)/SU(3) Symmetries (briefly)
- The Anomalous Sector (briefly)
- The Pion Form Factor in ee- Annihilation and t
Decay (Isospin Brk) - Loop Transition Effects in ee- Physical ?0,
?, ? - Extended Data Sample submitted to fit, Why?
- Fit results Plots
- Conclusions
9The Pion form Factor in ee- and t Physics
- Without Symmetry Breaking
- Isospin symmetry breaking mass splittings
W. Marciano A. Sirlin PRL 71 (1993) 3629
V. Cirigliano G. Ecker H. Neufeld PL B 513
(2001) 361
10The Pion form Factor in ee- and t Physics
- Without Symmetry Breaking
- Isospin symmetry breaking mass splittings
HLS
W. Marciano A. Sirlin PRL 71 (1993) 3629
V. Cirigliano G. Ecker H. Neufeld PL B 513
(2001) 361
11The Pion form Factor in ee- and t Physics
- With Symmetry Breaking
- Isospin symmetry breaking mass splittings
(?/W)V ?
?pp?
dm2
W. Marciano A. Sirlin PRL 71 (1993) 3629
V. Cirigliano G. Ecker H. Neufeld PL B 513
(2001) 361
12?/W- ? Transitions
- No isospin breaking
- Isospin symmetry breaking
-
? component -
-
?I and ?I components
?I component
13Transitions among vector fields at one loop
- At tree level ideal fields mass eigenstates
- At one loop, the HLS Lagrangian piece
- induces transitions among ideal fields
- ideal fields mass eigenstates
- isospin symmetry breaking
-
14Transitions among vector fields at one loop
- Define the loops
- K K- , K0 K0
- Then, beside self-masses
-
e2(s) ? 0 always -
- -
-
? 0 by isospin brk - -
e1(s) -
VVP Lagrangian KK loops // Yang-Mills
KKloops
f(s)
15The Modified Vector Mass Matrix
?I ?I fI
With m2 a g2 fp2 and µ zV No
SU(3) Brk , No SU(2) Brk
Blue Loop effects magenta SU(3) breaking
red isospin breaking
16Loop Corrections (? , ?) Mixing
?I ?I fI
Blue Loop effects magenta SU(3) breaking
red isospin breaking
17Isospin Breaking (?, ? , ?) Mixing
?I ?I fI
Blue Loop effects magenta SU(3) breaking
red isospin breaking
18The Mass Matrix Eigen System
- Expect
- Then solve for the eigensystem perturbatively
- and
19From Ideal To Physical Fields I
Real analytic matrix function
fulfills Unitarity Condition
20From Ideal To Physical Fields II
- Mass term derived from the eigenvalues of M2(s)
-
-
(Self masses include subtraction polynomials)
Leading order propagators become
21V p p Couplings
At leading order ? term unchanged
s-dependent ? and f couplings generated
22V p p Couplings
Orsay Phase 900 at peak
At leading order ? term unchanged
s-dependent ? and f couplings generated
23? V Couplings
- In terms of Ideal Fields
-
- Becomes
- With
24Vector Meson Couplings to ?/W
- (?/W) V transitions constant (PP,VP) loops
-
- loop term disp. relation (subtractions)
- tree terms
-
25Vector Meson Coupling to ?/W
- (?/W) V transitions constant (PP,VP) loops
-
- loop term disp. relation (subtractions)
- tree terms
-
?I and ?I components of ?0
26Parameter Freedom
- If only using the pion form factor (ee-,t) the
parameter freedom is far too large - a (HLS), g , zA , dm2 (4)
- Subtraction polynomials in
- ( 8)
- Too many parameters, too few structures
- Solution extend the fitted data sample more
information, less correlations
27The Extended Data Sample
- Add anomalous decay modes VP?, P??
- Price x, zT, zV, zA for 14 modes
- for
free - for
free 4 measured data Total 18 add. data
M.B.,L.D. ,S.E, V.I. H.OC, PR D 59 (1999)
114027
M.B, H.OC EPJ C22 (2001) 503
28The Main Guess
- Main Guess Proof of Principle
- 18 Decay Modes Pion FF in ee- annihilation
- Fully reconstruct
- The Pion FF in t decay
- (improvement of parameter fit values)
29The ?2 contributions to fits
Data Set (data points) Full Data Fit No t data No Spacelike Data
Decays (181) 11.13 11.52 11.48
New Timelike (1271) 128.1 122.0 125.8
Old Timelike (821) 59.1 54.7 55.2
Spacelike (592) 65.7 55.2 89.8/(59)
t ALEPH (33) 23.9 42.3/(33) 20.8
t CLEO (251) 26.1 26.2/(25) 29.7
?2/dof Probability 313.8/331 74 257.7/274 75 238.8/272 93
30The ?2 contributions to fits
Data Set (data points) Full Data Fit No t data No Spacelike Data
Decays (181) 11.13 11.52 11.48
New Timelike (1271) 128.1 122.0 125.8
Old Timelike (821) 59.1 54.7 55.2
Spacelike (592) 65.7 55.2 89.8/(59)
t ALEPH (33) 23.9 42.3/(33) 20.8
t CLEO (251) 26.1 26.2/(25) 29.7
?2/dof Probability 313.8/331 74 257.7/274 75 238.8/272 93
31The ?2 contributions to fits
t DATA OUTSIDE FIT ?2 distance to prediction
Data Set (data points) Full Data Fit No t data No Spacelike Data
Decays (181) 11.13 11.52 11.48
New Timelike (1271) 128.1 122.0 125.8
Old Timelike (821) 59.1 54.7 55.2
Spacelike (592) 65.7 55.2 89.8/(59)
t ALEPH (33) 23.9 42.3/(33) 20.8
t CLEO (251) 26.1 26.2/(25) 29.7
?2/dof Probability 313.8/331 74 257.7/274 75 238.8/272 93
32The ?2 contributions to fits
Spacelike data OUTSIDE FIT
Data Set (data points) Full Data Fit No t data No Spacelike Data
Decays (181) 11.13 11.52 11.48
New Timelike (1271) 128.1 122.0 125.8
Old Timelike (821) 59.1 54.7 55.2
Spacelike (592) 65.7 55.2 89.8/(59)
t ALEPH (33) 23.9 42.3/(33) 20.8
t CLEO (251) 26.1 26.2/(25) 29.7
?2/dof Probability 313.8/331 74 257.7/274 75 238.8/272 93
33Global Fit to ee- Data
FFs New Data
Cross Sections Old Data
34Fits to t Data
CLEO Data
ALEPH Data
35Spacelike Data pp Phase Shift
SpaceLike Data
I1 pp Phase shift NOT A FIT
36Fit Residuals No Structure
CLEO
ALEPH
ee- Data
37Isospin Symmetry Breaking ?0 VS ?
38Isospin Symmetry Breaking ?0 VS ?
0 NO IS Brk
Threshold -6
? Peak 3
F Mass -2
39Conclusions
- No mismatch between ee- and t data
- Radiative decays pion form factor in ee-
annihilation predict the observed
pion form factor in t decay - Previously unaccounted for effects I0 (?I,
?I) components inside the ?0 meson. - The 3.3 s discrepancy between prediction (using
ee- data) and the BNL measurement for the muon
anomalous moment is confirmed
40Fit Decay Modes Vs PDG
Decay Mode FIT/PDG Remark
?0 ? p0? 0.86 0.15
? ? p? 1.120.11
?0 ? ?? 1.040.11
K? K? 1.000.14
K0? K0? 0.980.09
? ? p0? 0.930.03
?? ?? 1.350.11
? ? p0? 0.990.08
? ? ?? 0.990.03
Decay Mode FIT/PDG Remark
?? ?0? 1.130.04
?? ?? 1.040.11
? ? ?? 0.970.12
?? ?? 0.900.02 !!!!!
?'? ?? 0.990.07
? ?ee- 1.000.02
? ?ee- 1.000.02
? ?pp- 0.980.29
Phase ??pp- 0.790.15
41The ?0 - ? Mass Difference
ALEPH Data
The ?0-? Mass Difference 1/ Only visible in
ALEPH data 2/ 1 .2 s from ChPT
dm2 0 Fixed
J. Bijnens P. Gosdzinsky PL B 388 (1996) 203
? Peak Region
dm2 Fitted
High mass Vector mesons
42Two New Results
Process FIT PDG
?0 ?ee- x105 5.560.06 4.700.08
? ?pp- () 1.130.08 1.700.27
?0 ?pp- MeV 144.50.6 149.41.0
43Two New Results
Process FIT PDG
?0 ?ee- x105 5.560.06 4.700.08
? ?pp- () 1.130.08 1.700.27
?0 ?pp- MeV 144.50.6 149.41.0
15 s apart starting from the same data!
44Two New Results
Process FIT PDG
?0 ?ee- x105 5.560.06 4.700.08
? ?pp- () 1.130.08 1.700.27
?0 ?pp- MeV 144.50.6 149.41.0
May change the global fit to ? branching ratios
45Fit Of The ? Mass Region Perfect
FFs New Data
Cross Sections Old Data
46Additional Information
- THE MIXING Â ANGLESÂ
- The (?,?) and (?, ?) mixing angles are small
(wrt 1) complex numbers - The (?, ?) mixing angle is real and small (wrt
1)
47The (?, ?) Mixing Angle
-4
Real part
Imag. part
48The (?, ?) Mixing Angle
Real Part
Imag. Part
49The (?, ?) mixing angle
Real Part
Start non-zero imaginary part
Imag. Part
50Hadronic Photon Vacuum Polarization
?
?
M. Davier et al.
H. Burkhardt
Photon Hadronic VP
s (GeV2)
Full Correction Factor (Hadr. Lept.)
s (GeV2)
51The Pion Form Factor
e
p
? I0,1
p-
e-
?t
p
t
W I1
p0
52The Hidden Local Symmetry Model
- Vector Mesons gauge bosons of a HL symmetry
-
- Define
- Define covariant derivatives
- Then and
- The HLS Lagrangian
- VMD a2 , Phenomenology a 2.4
-
-
-
M.Bando, T. Kugo K. Yamawaki Phys. Rep. 164
(1988) 217 M. Harada K. Yamawaki Phys. Rep. 381
(2003) 1
Expanded form M.Benayoun H.OConnell PR D 58
(1998) 074006
53The Hidden Local Symmetry Model
- Vector Mesons gauge bosons of a HL symmetry
-
- Define
- Define covariant derivatives
- Then and
- The HLS Lagrangian
- VMD a2 , Phenomenology a 2.4
-
-
-
M.Bando, T. Kugo K. Yamawaki Phys. Rep. 164
(1988) 217 M. Harada K. Yamawaki Phys. Rep. 381
(2003) 1
PS field matrix
Expanded form M.Benayoun H.OConnell PR D 58
(1998) 074006
54The Covariant Derivatives
- Covariant derivatives ? for left- right-? fields
- With
T is CKM matrix reduced to Vus and Vud terms
55Breaking of SU(3) Flavor Symmetry
Several possible schemes
Benayoun OConnell op. cit.
With Breaking matrices
zV related to vector meson masses,
Bando Kugo Yamawaki op. cit.
56Breaking of SU(3) Flavor Symmetry
Several possible schemes
Benayoun OConnell op. cit.
With Breaking matrices
zV related to vector meson masses,
Bando Kugo Yamawaki op. cit.
57Nonet Symmetry Breaking in HLS Model
- Nonet Symmetry Breaking accounted for by adding
determinant terms to HLS Lagrangian - Effective way
- Radiative decays of light mesons vs glue
- no glue but
M. Benayoun L. DelBuono H. OConnell EPJ C 17
(2000) 593
P.J. ODonnell RMP 53 (1981) 673
M. Benayoun et al. PR D 59 (1999) 114027
58Anomalous Sector of the HLS Model
- HLS Model has an anomalous sector for VP? and
P?? couplings can be derived from - XT allows for correct account of K rad. decays
- C -Â 3 /(4 p2 fp)
- mixing angle related with
vanishes when no SU(3) breaking
M. Benayoun et al. PR D 59 (1999) 114027
A. Bramon, A. Grau G. Pancheri PL B 345 (1995)
263
G. Morpurgo PR D 42 (1990) 1497
MB, LD HO EPJ C 17 (2000) 593