Title: Carbon%20Nanotube%20Field-Effect%20Transistors:
1Carbon Nanotube Field-Effect Transistors An
Evaluation
D.L. Pulfrey, L.C. Castro, D.L. John
Department of Electrical and Computer
Engineering University of British
Columbia Vancouver, B.C. V6T1Z4,
Canada pulfrey_at_ece.ubc.ca
2Single-wall and multi-wall NANOTUBES
Compare flaxen hair - 20,000 nm
3CNT formation by catalytic CVD
2000nm
5?m islands in PMMA patterned by EBL
LPD of Fe/Mo/Al catalyst
Lift-off PMMA
No field
CVD from methane at 1000C
J.Kong et al., Nature, 395, 878, 1998
A. Ural et al., Appl. Phys. Lett., 81, 3464, 2002
Growth in field (1V/micron)
4Single-Walled Carbon Nanotube
- Hybridized carbon atom ? graphene monolayer ?
carbon nanotube
5VECTOR NOTATION FOR NANOTUBES
Chiral tube
Adapted from Richard Martel
6E-EF (eV) vs. k (1/nm)
Eg/2
(5,0) semiconducting
(5,5) metallic
7Doping
- Adsorbed possible
- e.g., K, O
Tubes are naturally intrinsic
8Phonons
- Acoustic phonons (twistons) mfp ? 300 nm
- Optical phonons
- mfp ? 15 nm
Ballistic transport possible
9Fabricated Carbon Nanotube FETs
- Few prototypes
- Tans98 1st published device
- Wind02 Top-gated CNFET
- Rosenblatt02 Electrolyte-gated
10CLOSED COAXIAL NANOTUBE FET STRUCTURE
chirality (16,0) radius 0.62 nm bandgap 0.63
eV length 15 - 100 nm oxide thickness (RG-RT)
2 - 6 nm
11MODE CONSTRICTION and TRANSMISSION
Doubly degenerate lowest mode
T
CNT (few modes)
METAL (many modes)
12Quantum Capacitance Limit
gate
Cins
insulator
CQ
nanotube
source
13Quantum Capacitance and Sub-threshold Slope
High k dielectrics zirconia - 25 water - 80
70 mV/decade ! - Javey et al., Nature Materials,
1, 241, 2002
14AMBIPOLAR CONDUCTION
Experimental data M. Radosavljevic et al.,
arXiv cond-mat/0305570 v1
Vds - 0.4V Vgs -0.15 0.05 0.30
15Minimize the OFF Current
?S,D 3.9 eV Increasing ?G ? 3.0, 4.37 eV
?G 4.2 eV Increasing ?S,D ? 3.9, 4.2, 4.5 eV
ON/OFF ?103
16General non-equilibrium case
Non-equilib f(E)
Q(z,E)qf(E)g(E)
Solve Poisson iteratively
17CURRENT in 1-D SYSTEMS
18Quantized Conductance
In the low-temperature limit
Interfacial G even when transport is ballistic
in CNT
155 ?S for M2
19Measured Conductance
G ? 0.4 Gmax at 280K !!
A. Javey et al., Nature, 424, 654, 2003
- No tunneling barriers
- Low R contacts (Pd)
20Drain Saturation Current
If T1 Get BJT behaviour!
Zero-height Schottky barrier
21ON Current Measured and Possible
CQ limit
?S,D 3.9eV ?G 4.37eV
80 of QC limit!
Present world record Javey et al., Nature, 424,
654, 2003
22Predicted Drain Current
-ve
0
ve
VgsVds0.4V
70mA/?m !!
23Transconductance
Low VDS modulate for G High VDS modulate VGS
for gm
24Transconductance Measured and Possible
CQ limit
?S,D 3.9eV ?G 4.37eV
80 of QC limit!
Highest measured Rosenblatt et al. Nano. Lett.,
2, 869, 2002
25CNFET Logic
A.Javey et al., Nature Materials, 1, 241, 2002
Gain60
0,0
1st OR-gate
26Recognition-based assembly
CNTs Functionalized with DNA
Williams, Veenhuizen, de la Torre, Eritja and
Dekker Nature, 420, 761, 2002.
27Self-assembly of DNA-templated CNFETs K.Keren
et al., Technion.
28Self-assembly of DNA-templated CNFETs K.Keren
et al., Technion.
29CONCLUSIONS
- Schottky barriers play a crucial role in
determining the drain current. - Negative barrier devices enable
- control of ambipolarity,
- high ON/OFF ratios,
- near ultimate-limit S, G, ID, gm.
- CNFETs can be self-assembled via biological
recognition. - CNs have excellent thermal and mechanical
properties. - CNFETs deserve serious study as molecular
transistors.
30Extra Slides
31Compelling Properties of Carbon Nanotubes
- Nanoscale
- Bandgap tunability
- Metals and semiconductors
- Ballistic transport
- Strong covalent bonding
- -- strength and stability of graphite
- -- reduced electromigration (high current
operation) - -- no surface states (less scattering,
compatibility with many insulators) - High thermal conductivity
- -- almost as high as diamond (dense circuits)
- Lets make transistors!
32CHIRAL NANOTUBES
Armchair
Zig-Zag
Chiral
From Dresselhaus, Dresselhaus Eklund. 1996
Science of Fullerenes and Carbon Nanotubes. San
Diego, Academic Press. Adapted from Richard
Martel.
33(No Transcript)
34Carbon Nanotube Properties
- Graphene sheet 2D E(k//,k?)
- Quantization of transverse wavevectors
- k? (along tube circumference)
- ? Nanotube 1D E(k//)
- Nanotube 1D density-of-states derived from
?E(k//)/?k-1 - Get E(k//) vs. k(k//,k?) from Tight-Binding
Approximation
35Density of States
k or kz
36Tight Binding
David John, UBC Wolfe et al., Physical
Properties of Semiconductors
37Density of States (5,0) tube
E(eV) vs. DOS (100/eV/nm)
E(eV) vs. k (1/nm)
38Tuning the Bandgap
T. Odom et al., Nature, 391, 62, 1998
Eg lt 0.1 eV for d gt 7 nm zero bandgap
semiconductor
39The Ideal Structure
nanotube
oxide
gate
Coaxial
Planar
40CNT formation by catalytic CVD
5?m islands in PMMA patterned by EBL
1000nm
LPD of Fe/Mo/Al catalyst
300nm
Lift-off PMMA
CVD from methane at 1000C
2000nm
J.Kong et al., Nature, 395, 878, 1998
41CNT formation by E-field assisted CVD
V applied between Mo electrodes. CVD from
catalytic islands.
No field
10V applied
A. Ural et al., Appl. Phys. Lett., 81, 3464, 2002
42Bottom-gated Nanotube FETs
1st CNFET S. Tans et al., Nature, 393, 49, 1998
Note very high ID 10mA/?m
A. Javey et al., Nature, 424, 654, 2003
43Phenomenological treatment of metal/nanotube
contacts
Evidence of work function-dependence of I-V
A. Javey et al., Nature, 424, 654, 2003
Zero hole barrier
44Schrödinger-Poisson Model
- Need full QM treatment to compute
- -- Q(z) within positive barrier regions
- -- Q in evanescent states (MIGS)
- -- S ? D tunneling
- -- resonance, coherence
45Schrödinger-Poisson Model
L.C. Castro, D.L. John
S
D
CNT
Unbounded plane waves
46Increasing the Drain Current
VgsVds0.4V
70mA/?m !!
47Array of vertically grown CNFETs W.B. Choi et
al., Appl. Phys. Lett., 79, 3696, 2001.
2x1011 CNTs/cm2 !!