Output GroupingBased Decomposition of Logic Functions - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Output GroupingBased Decomposition of Logic Functions

Description:

Output Grouping-Based Decomposition of Logic Functions. Petr Fi er, Hana Kub tov ... Method to determine the 'output grouping' ... – PowerPoint PPT presentation

Number of Views:25
Avg rating:3.0/5.0
Slides: 34
Provided by: petr89
Category:

less

Transcript and Presenter's Notes

Title: Output GroupingBased Decomposition of Logic Functions


1
Output Grouping-Based Decomposition of Logic
Functions
  • Petr Fier, Hana Kubátová
  • Department of Computer Science and Engineering
  • Czech Technical University

2
Outline
  • Motivation
  • Single-Level Partitioning
  • Proposed Method
  • Basic FC-Min Principles
  • Output Grouping
  • Experimental Results
  • Conclusions

3
Motivation
  • Typical logic synthesis process
  • Perform Boolean minimization
  • Multi-level synthesis, decomposition
  • Technology mapping
  • These phases are often independent on each other
    - ineffective

4
Motivation
  • Boolean minimization should be driven towards the
    target technology

5
Single-Level Partitioning
  • Two-level AND-OR network
  • Limited number of inputs/outputs in real devices
  • Solution divide the circuit into stand-alone
    blocks, while reducing the number of their inputs
    and complexity of the blocks

6
Single-Level Partitioning
  • The way how to minimize the number of inputs of
    the blocks proposed before
  • Fier, P. - Kubátová, H. Single-Level
    Partitioning Support in BOOM-II, Proc. 2nd
    Descrete-Event System Design 2004 (DESDes'04),
    Dychów, Poland, 15.-17.9.04, pp. 149-154
  • Reducing the input set means an increase of the
    size of the circuits (some of the group terms
    cannot be shared)
  • The issue how to group the outputs to minimize
    the complexity of the blocks

7
Proposed Method
  • Method to determine the output grouping
  • Based on FC-Min, even when no minimization is
    involved
  • Significant reduction in area overhead, for both
    the two-level and multi-level implementations
  • Input set is reduced as well

8
FC-Min
  • Two-level Boolean minimizer
  • Primarily designed for group minimization
  • Produces only the necessary group implicants no
    excessive implicants are generated
  • First, the on-set cover is found (Find Cover)
  • Then implicants are computed

9
Find Cover
  • Generates rectangle cover of the on-set
  • Determines the number of product terms in the
    solution, not their structure
  • Independent on literals
  • Directly determines group implicants

10
Find Cover
11
Output Grouping
  • Main idea outputs that share many group
    implicants should be grouped together
  • The effects are obvious for two-level
    minimization, however the same can be observed
    for multi-level implementation

12
Output Grouping
  • Grouping matrix (G-Matrix)
  • Combines influences of various group implicants
  • Symmetric matrix of dimensions m, m
  • The value of Gi, j defines the strength binding
    the two output variables i and j together

13
Output Grouping
  • G-Matrix Example

Initial State
12345 1 00000 2 00000 3 00000 4 00000 5 00000
14
Output Grouping
  • G-Matrix Example

T1 added
01234 0 00000 1 00000 2 00000 3 00001 4 00010
15
Output Grouping
  • G-Matrix Example

T2 added
01234 0 00000 1 00100 2 01000 3 00001 4 00010
16
Output Grouping
  • G-Matrix Example

T3 added
01234 0 00100 1 00100 2 11000 3 00001 4 00010
17
Output Grouping
  • G-Matrix Example

T4 added
01234 0 00100 1 00110 2 11000 3 01001 4 00010
18
Output Grouping
  • G-Matrix Example

T6 added
01234 0 00100 1 00110 2 11001 3 01001 4 00110
19
Output Grouping
  • G-Matrix Example

T1 added
Another cover, 2nd G-Matrix
01234 0 00000 1 00000 2 00011 3 00101 4 00110
20
Output Grouping
  • G-Matrix Example

T2 added
Another cover, 2nd G-Matrix
01234 0 00000 1 00101 2 01012 3 00101 4 01210
21
Output Grouping
  • G-Matrix Example

T3 added
Another cover, 2nd G-Matrix
01234 0 00000 1 00111 2 01012 3 01101 4 01210
22
Output Grouping
  • G-Matrix Example

T4 added
Another cover, 2nd G-Matrix
01234 0 00100 1 00111 2 11012 3 01101 4 01210
23
Output Grouping
  • G-Matrix Example

T5 added
Another cover, 2nd G-Matrix
01234 0 00100 1 00211 2 12012 3 01101 4 01210
24
Output Grouping
  • G-Matrix Example

T6 added
Another cover, 2nd G-Matrix
01234 0 00100 1 00211 2 12012 3 01102 4 01220
25
Output Grouping
  • G-Matrix Example

Normalization transform into lt0, 1gt
01234 0 00100 1 00211 2 12012 3 01102 4 01220
0 1 2 3 4 0 0 0 0.5 0 0 1 0 0
1 0.5 0.5 2 0.5 1 0 0.5 1 3 0 0.5 0.5 0
1 4 0 0.5 1 1 0
2
26
Output Grouping
  • G-Matrix Example

Summing the two matrices
0 1 2 3 4 0 0 0 1.5 0 0 1 0 0
2 1.5 0.5 2 1.5 2 0 0.5 2 3 0 1.5 0.5 0
2 4 0 0.5 2 2 0
0 1 2 3 4 0 0 0 0.5 0 0 1 0 0
1 0.5 0.5 2 0.5 1 0 0.5 1 3 0 0.5 0.5 0
1 4 0 0.5 1 1 0
01234 0 00100 1 00110 2 11001 3 01001 4 00110


27
Output Grouping
  • G-Matrix Example
  • Final output grouping
  • Task
  • Divide the 5-output circuit into max. 3-output
    blocks

28
Output Grouping
  • G-Matrix Example

Final output grouping
Find maximum
0 1 2 3 4 0 0 0 1.5 0 0 1 0 0
2 1.5 0.5 2 1.5 2 0 0.5 2 3 0 1.5 0.5 0
2 4 0 0.5 2 2 0
B1 1, 2
29
Output Grouping
  • G-Matrix Example

Final output grouping
Find maximum in row 1 and column 2
0 1 2 3 4 0 0 0 1.5 0 0 1 0 0
2 1.5 0.5 2 1.5 2 0 0.5 2 3 0 1.5 0.5 0
2 4 0 0.5 2 2 0
Select 4
B1 1, 2, 4
30
Output Grouping
  • G-Matrix Example

Final output grouping
B1 1, 2, 4 B2 0, 3
31
Experimental Results
  • Hard MCNC benchmarks
  • 3 experiments for each
  • Minimize by Boom and decompose into2-input gate
    network using SIS
  • Randomly divide the circuit into several blocks,
    then 1.
  • Divide the circuit using the proposed method, the
    1.

32
Experimental Results
33
Conclusions
  • A new output-grouping method
  • Based on FC-Min
  • Significant area reduction observed, with respect
    to the random technique
  • Input support reduced too
  • Very fast
Write a Comment
User Comments (0)
About PowerShow.com