Title: Seyfert Jets : weak, slow
1Seyfert Jets weak, slow heavy
- Mark Whittle (Virginia)
- David Rosario (Virginia)
- John Silverman (Virginia/CfA)
- Charlie Nelson (Drake)
- Andrew Wilson (Maryland)
- Markarian 78 provides ideal access to
- Jet-gas interactions
- Nature of jets in radio quiet AGN
AJ papers I Data, II Ionization, III Jet
properties
2Overall Context
- Several inter-dependent components
- Jet flow relativistic material
- Lobe ionized line-emitting
gas - ISM thermal (low density)
gas
LOBE
Relativistic gas
Line Emitting gas
ISM
Thermal gas
3Overall Context
- Several physical processes
- entrainment of ISM by jet
- acceleration of line-emitting gas
- lobe expansion into ISM
4Available Data
- Emission Line image OIII (HST)
- Radio image 3.6cm (VLA)
- Emission Line kinematics (HST-STIS)
- Briefly review this ?
5Overlay Radio (contours) OIII (image)
64 STIS Slit Positions
7STIS low dispersion spectral data
8STIS high dispersion OIII 5007 data
9Slit B kinematic measurements
Peak Velocity
FWHM
-2 -1 0 1
2 3
East Nuc
West
10Extinction
Density
Line flux
Mass
Momentum
KE
11Region Properties
- 3 regions W-knot / E-fan / W-lobe
- Age size/velocity 0.4 / 4 / 8 Myr
- Ionized gas
- Mass 0.4 / 1.0 / 1.1 x 106 Msun
- Filling factor 30 / 1.5 / 0.5 x 10-4
- Covering factor 0.5 / 0.5 / 0.5
12Pressures Prel, Pem, Prad
- High 1-few x 10-10 dyne cm-2
- All decrease with radius ( r -1)
- both consistent with presence in bulge ISM
- Prel Pem ( Prad)
- pressure balance between relativistic ionized
gas - Prel can drive lobe expansion into ISM at VOIII
- Prel Prad cant quite accelerate ionized gas
- may need dynamical (ram) pressure of jet
13Energies Luminosities
- For each region, independently
- LUV(intercept) 1000 x 1040 erg s-1
- Lem 10LOIII 1000
- Lmec KE/age 1
- Lrel Erel/age 1
- (Lexp 1)
- Lradio 0.2
- NLR ionized by nuclear UV (not shocks)
- Nuclear photon power dominates all others
- KEgas Eexp come from radio-emitting flow
14The Jet Flow
- Jet properties are illusive but important
- Radio provides some access
- pressures, stored internal energy
- Emission lines very useful
- estimate jets luminosity momentum
- We follow approach of Bicknell et al (98)
- But, with different starting assumptions
- these lead to very different jet properties
15Starting Assumptions
- Jet Luminosity
- B98 Lj Lem 100LOIII (since shock
generated) - W04 Lj (EKE aeErel)/age aeElobe/age
- Lj(W) 10-3 Lj(B) 1040.5 erg s-1
- Jet Momentum Flux
- B98 Fj/Aj Pram ?emV2sh ?emV2OIII
- W04 Fj/Aj Pram am Gem /age /Aj
- Fj(W) 10-2 Fj(B) 1033.5 dyne
16JET LUMINOSITY
Emission Lines Lem
Bicknell et al 98
Shock
Lj
Lj Lem 100 x L5007
Our analysis
EKE S½M V2
Lj
1040.5 erg s-1
Elobe PV aeErel
Lj (EKE aeErel)/tage
ae asyn aad aff 2 10
For Mkn 78 other Seyferts Lj (us) 10-3
x Lj (B98)
17JET MOMENTUM FLUX
VshVem 500 km/s
Our analysis
Gem SM V
Fj
Gradual acceleration
Fj amGem / tage
1033.5 dyne
am adrag alcf 2 5
For Mkn 78 other Seyferts Fj (us) 10-2 x
Fj (B98)
18Starting Assumptions
- Jet Luminosity
- B98 Lj Lem 100LOIII (since shock
generated) - W04 Lj (EKE aeErel)/age aeElobe/age
- Lj(W) 10-3 Lj(B) 1040.5 erg s-1
- Let Momentum Flux
- B98 Fj/Aj Pram ?emV2sh ?emV2OIII
- W04 Fj/Aj Pram am Gem /age /Aj
- Fj(W) 10-2 Fj(B) 1033.5 dyne
- Our jets are much weaker
19Derivation of jet properties
- Model jet as 2 component system
- 1 Relativistic ratio defined by
filling factor - 2 Thermal ffrel (1 ffth)
- assume pressure balance Pth Prel B2min/8p
- Energy Ej KEth (5/2) Pth 4Prel KErel
0 - Momentum Gj Gth Grel Gth Grel
0 - Use estimates of Ej Gj Bmin Aj tage
- to derive many jet properties
20Jet Properties
- Jet energy (1040.5 erg s-1) momentum fluxes
- (1033.5 dyne) both dominated by thermal gas
- RKE KEj/Eint 10 / 2 / 1 ( Mj2)
- decrease suggests KE converted to internal
- Ram pressure Pram Fj/Aj 30 / 7 / 4 x Prel
- Pram(W04) 10-2 10-3 Pram(B98)
- Our jet is gentle
- Pram is significantly greater than Prel Prad
- hydrodynamic acceleration of ionized gas
- shocks in ionized gas are slow 10-50 km s-1
21Jet Properties
- Jet velocity Vj 2Lj/ Fj (1 Rke-1)
- Vj 0.3 3 x 103 km s-1 1 few x VOIII
- cf. Vj (B98) 15 90 x 103 km s-1
- our jet is slow
- Jet density ?j Fj/PramAj 0.15 cm-3
?ISM - consistent with entrained ISM
- our jet is dense ? ?j /?ISM 1
- future simulations should consider ? 1 jets
22Jet Properties
- Jet temperature Mach
- Tth Pj /knth ? 106.5 107.5 K
- temp 0.2 0.7 fully virialized (cf. Pram gt
Prel) - Mj 5 / 2.5 / 1.5 ? jet is transonic
- ? efficient entrainment
decollimation - Jet mass transport Mth Fj/ Vj 0.5 Msun yr-1
- Mth tage 106 Msun thermal content of lobe
- Jet supplies lobes thermal component ?
23Jet Properties
- Jet synchrotron efficiency
- Rsyn Lradio /Lj Lradio tage /Elobe
- 0.1 Fff P-103/4
t6 1-few - similar to other radio sources (e.g. CSS
FR-I,II) - not obvious why very different types of jet
- cf. Rsyn(B98) 10-4 ltlt Rsyn(us)
- ? sub-equipartition fields, or
- ? low ffrel ? thermal component dominates
24Jet Base / Inner Jet
- Previous analysis applies to scales gt 100pc
- ? thermally dominated flow slow dense
- Is the flow created like this?
- could it start with ffrel 1.0, then entrain
thermal gas - probably not need Fj-b Fj-kpc
- Lj-b gt
Lj-kpc - S8Ghz lt
3mJy - implies Vj-b c and Lj-b 1043 erg s-1
- Most energy lost in core ? bright radio ? not
seen - Jet created with thermal component
- may define nature of radio quiet jets
- note cant be pure thermal (Rsyn too high)
25Conclusions
- Mkn 78 gives excellent access to jet properties
- Must combine radio and emission line data
- ? pressure, internal energy, KE, momentum, age
- For three regions, we find
- Age sequence 106 Msun low ff high cf
- P PISM Prel Pem Prad lobe expansion
VOIII - LUV Lem dominate shocks Erel EKE
- Model jet as 2 component relativistic thermal
- follow Bicknell et al 98 but dont use shocks
- instead, take Lj aeElobe/tage Fj amGem /
tage - derive jet properties ?
26Conclusions
- The jet is weak Lj 1040.5 erg/s Fj 1033.5
dyne - Thermal gas dominates jet energy momentum
- Pram 4 - 30 Pint gentle jet
- adequate to accelerate ionized gas
- drives slow shocks into ionized clouds (10-50 km
s-1) - Jet velocity 1-few VOIII relatively slow
jet - Jet density ?ISM dense jet
- Transonic Mj 2-5 Tth 106.5 K Rsyn
normal - Thermal content may fill radio lobe
- Jet base jet created with thermal component
27New HST Project 1 or 2 slits on six other
objects with evidence for JGI.
28Comparison Ours is a kinder, gentler jet.
Maybe more plausible ?
Jet Property Our Jet Bicknell et al
Energy flux Lj x 1 x 1000
Momentum flux Fj x 1 x 100
Velocity Vj 300 3000 km/s (1 few Vem) 15 90 x103 km/s (0.05c 0.3c)
Density nj 0.1 5 cm-3 0.1 5 cm-3
Ram pressure Pj x 1 x 100
Cloud shock Vsh 10 50 km/s 500 1000 km/s
Temperature Tj 106 K 109 K
Mach No. Mj 2 5 1 few